Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 18 2024 17:39:20
%S 9,2,1,7,5,3,6,7,0,0,1,9,2,3,1,5,4,4,7,0,5,1,3,1,3,6,3,2,6,5,2,4,7,9,
%T 1,9,6,0,8,2,3,9,7,9,9,6,0,3,7,9,5,4,2,9,0,3,1,1,2,0,8,4,1,2,7,3,3,3,
%U 2,2,5,3,6,7,3,5,0,3,0,2,9,0,7,5,7,4,5,7,5,1,5,2,2,5,4,3,0,7,9,3,2,4,2,0,2
%N Decimal expansion of the first derivative of the infinite power tower function x^x^x... at x = sqrt(2).
%C It is known that sqrt(2)^sqrt(2)^sqrt(2)^... = 2.
%H Alois P. Heinz, <a href="/A277559/b277559.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>
%F Equals 2^(3/2)/(1-log(2)).
%F Equals A010466/A244009. - _Michel Marcus_, Oct 20 2016
%e 9.21753670019231544705131363265247919608239799603795429...
%t RealDigits[Sqrt[8]/(1-Log[2]), 10, 100][[1]] (* _G. C. Greubel_, Jul 27 2018 *)
%o (PARI) sqrt(8)/(1-log(2)) \\ _Michel Marcus_, Oct 20 2016
%o (Magma) Sqrt(8)/(1-Log(2)); // _G. C. Greubel_, Jul 27 2018
%Y Cf. A002162, A002193, A010466, A244009, A277522, A277651.
%K nonn,cons
%O 1,1
%A _Alois P. Heinz_, Oct 19 2016