login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

n-th derivative of the eighth tetration of x (power tower of order 8) x^^8 at x=1.
3

%I #14 May 30 2018 03:29:18

%S 1,1,2,9,56,480,5094,65534,984808,16629264,312523680,6425601072,

%T 143775827832,3471659156784,90060216241800,2496918043296840,

%U 73703868906725184,2307477802376274048,76376765284713220032,2664806795257276548288,97747916619062963335680

%N n-th derivative of the eighth tetration of x (power tower of order 8) x^^8 at x=1.

%H Alois P. Heinz, <a href="/A277539/b277539.txt">Table of n, a(n) for n = 0..400</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PowerTower.html">Power Tower</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation">Knuth's up-arrow notation</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a>

%F E.g.f.: (x+1)^^8.

%p f:= proc(n) f(n):= `if`(n=0, 1, (x+1)^f(n-1)) end:

%p a:= n-> n!*coeff(series(f(8), x, n+1), x, n):

%p seq(a(n), n=0..25);

%t f[n_] := f[n] = If[n == 0, 1, (x + 1)^f[n - 1]];

%t a[n_] := n!*SeriesCoefficient[f[8], {x, 0, n}];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, May 30 2018, from Maple *)

%Y Column k=8 of A277537.

%Y Cf. A215703, A295108.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Oct 19 2016