Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 31 2016 01:46:58
%S 3,3,3,3,7,3,3,3,3,13,3,3,3,3,3,7,3,3,3,3,11,3,3,3,3,3,19,3,3,3,3,11,
%T 3,3,3,3,3,13,3,3,3,3,7,3,3,3,3,3,5,3,3,3,3,7,3,3,3,3,7,3,3,3,3,3,7,3,
%U 3,3,3,11,3,3,3,3,3,7,3,3,3,3,13,3,3,3,3,3,7,3,3,3,3,19,3,3,3,3,3,5,3,3
%N Smallest prime p such that n sqrt(2) < m sqrt(p) < (n+1) sqrt(2) for some integer m.
%C In fact, m is both the ceiling of the square root of 2n^2/p and the floor of the square root of 2(n+1)^2 / p.
%C Eggleton et al. show that a(n)=3 if and only if n is a term in A277644.
%C First occurrence of the n-th prime > 2: 1, 49, 5, 21, 10, 174, 27, 223, 1656, 3901, 1286, 1847, 5095, 3117, 5678, 1727, 14844, 23678, 10986, 33868, 41241, 42794, 50451, 35301, 39546, 206241, 10561, 89600, 50075, 87273, 75922, 142760, 3493, 236213, 277242, 805287, 619149, 333339, 308517, 186105, 109981, 1385669, 215516, 1389450, 130253, 29797, 368004, 584234, 879460, 1711711, 6061772, 2401437, 1891953, 3664144, 1465847, 3260206, 2908877, 4414026, 1338945, 506017, 5420710, ..., . - _Robert G. Wilson v_, Nov 17 2016
%D R. B. Eggleton, J. S. Kimberley and J. A. MacDougall, Square-free rank of integers, submitted.
%H Jason Kimberley, <a href="/A277515/b277515.txt">Table of n, a(n) for n = 1..10000</a>
%e a(5)=7 because 3 r(5) < 4 r(3) < 5 r(2) < 3 r(7) < 6 r(2) < 5 r(3) < 4 r(5), where r(x) is the square root of x.
%t f[n_] := Block[{p = 2}, While[ Ceiling[ Sqrt[2 n^2/p]] != Floor[ Sqrt[2 (n + 1)^2/p]], p = NextPrime@ p]; p]; Array[f, 80] (* _Robert G. Wilson v_, Nov 17 2016 *)
%o (Magma)
%o function A277515(n)
%o p := 2;
%o lower := 2*n^2;
%o upper := 2*(n+1)^2;
%o repeat
%o p := NextPrime(p);
%o m := Isqrt(upper div p);
%o until p*m^2 gt lower;
%o return p;
%o end function;
%o [A277515(n):n in[1..100]];
%Y First occurrences of each prime > 2 are listed in A278107.
%Y Cf. A277644 and A277645.
%K nonn,easy
%O 1,1
%A _Jason Kimberley_, Oct 18 2016