Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Nov 14 2016 10:35:19
%S 1,2,0,2,2,2,0,2,1,2,1,3,1,3,1,3,3,2,3,3,5,4,1,4,3,4,2,4,4,2,4,4,4,3,
%T 3,4,3,4,5,5,5,4,4,6,6,3,3,9,4,5,6,9,4,6,4,4,8,6,5,7,5,9,5,5,7,8,6,11,
%U 5,9,4,7,9,9,6,10,5,5,17,4,10,9,10,7,3,3,10,8,7,10,6,9,5,10,10,10,8,11,6,9,10,7,7,7,7,12,9,11,13,9,12,6,10,9,6
%N a(n) = number of integers one more than a prime encountered before reaching (n^2)-1 when starting from k = ((n+1)^2)-1 and iterating map k -> k - A002828(k).
%H Antti Karttunen, <a href="/A277486/b277486.txt">Table of n, a(n) for n = 1..10000</a>
%F For n >= 2, a(n) <= A277890(n).
%e For n=6, we start iterating from k = ((6+1)^2)-1 = 48, and then 48 - A002828(48) = 45, 45 - A002828(45) = 43, 43 - A002828(43) = 40, 40 - A002828(40) = 38, and 38 - A002828(38) = 35 (which is 6^2 - 1), and when we subtract one from each, only 47 and 37 are primes, thus a(6) = 2.
%e For n=7, we start iterating from k = ((7+1)^2)-1 = 63, and 63 -> 59, 59 -> 56, 56 -> 53, 53 -> 51, 51 -> 48 (which is 7^2 - 1), and subtracting one from each of 63, 59, 56, 53 and 51, doesn't yield a prime for any, thus a(7)=0. (Note that even though 48-1 = 47 is a prime, it is not included in the count for n=7).
%o (PARI)
%o istwo(n:int)=my(f); if(n<3, return(n>=0); ); f=factor(n>>valuation(n, 2)); for(i=1, #f[, 1], if(bitand(f[i, 2], 1)==1&&bitand(f[i, 1], 3)==3, return(0))); 1
%o isthree(n:int)=my(tmp=valuation(n, 2)); bitand(tmp, 1)||bitand(n>>tmp, 7)!=7
%o A002828(n)=if(issquare(n), !!n, if(istwo(n), 2, 4-isthree(n))) \\ From _Charles R Greathouse_ IV, Jul 19 2011
%o A277486(n) = { my(orgk = ((n+1)^2)-1); my(k = orgk, s = 0); while(((k == orgk) || !issquare(1+k)), s = s + if(isprime(k-1),1,0); k = k - A002828(k)); s; };
%o for(n=1, 10000, write("b277486.txt", n, " ", A277486(n)));
%o (Scheme)
%o (define (A277486 n) (let ((org_k (- (A000290 (+ 1 n)) 1))) (let loop ((k org_k) (s 0)) (if (and (< k org_k) (= 1 (A010052 (+ 1 k)))) s (loop (- k (A002828 k)) (+ s (A010051 (+ -1 k))))))))
%Y Cf. A000290, A010051, A010052, A277487, A277488, A277890, A278166 (partial sums).
%K nonn
%O 1,2
%A _Antti Karttunen_, Nov 08 2016