%I #12 Nov 05 2016 13:25:05
%S 0,0,2,0,0,6,0,2,0,12,0,0,42,24,20,0,2,48,420,120,30,0,0,306,2160,
%T 2420,360,42,0,2,600,17532,27600,9750,840,56,0,0,2442,115464,375260,
%U 191760,30702,1680,72,0,2,6048,830100,4810680,4098510,917280,81032,3024,90,0,0,20706,5745120,62813540,85691640,28669662,3406368,187560,5040,110
%N Square array A(n,k) (n>=1, k>=1) read by antidiagonals: A(n,k) is the number of n-colorings of the Möbius ladder M_k on 2k vertices.
%C M_1 is two vertices connected by a triple edge and thus behaves like the path graph P_2 in terms of colorings. M_2 is isomorphic to K_4, the tetrahedral graph.
%H N. L. Biggs, R. M. Damerell and D. A. Sands, <a href="https://dx.doi.org/10.1016%2F0095-8956%2872%2990016-0">Recursive families of graphs</a>, Journal of Combinatorial Theory Series B Volume 12 (1972), 123-131. MR0294172
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MoebiusLadder.html">Möbius Ladder</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic polynomial</a>
%F A(n,k) = (n^2-3n+3)^k+(n-1)((3-n)^k-(1-n)^k)-1.
%e Square array A(n,k) begins:
%e 0, 0, 0, 0, 0, 0, 0, ...
%e 2, 0, 2, 0, 2, 0, 2, ...
%e 6, 0, 42, 48, 306, 600, 2442, ...
%e 12, 24, 420, 2160, 17532, 115464, 830100, ...
%e 20, 120, 2420, 27600, 375260, 4810680, 62813540, ...
%e 30, 360, 9750, 191760, 4098510, 85691640, 1801468230, ...
%Y Cf. A277443 (colorings of prism graphs), A182406 (square grid graphs).
%Y Columns k=1,2 are A002378 and A052762. Rows n=1,2 are A000004 and A010673.
%K nonn,tabl
%O 1,3
%A _Jeremy Tan_, Oct 15 2016