login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^(6n+5).
0

%I #20 Nov 16 2016 13:22:05

%S 32,2048,131072,8388608,536870912,34359738368,2199023255552,

%T 140737488355328,9007199254740992,576460752303423488,

%U 36893488147419103232,2361183241434822606848,151115727451828646838272,9671406556917033397649408,618970019642690137449562112,39614081257132168796771975168

%N a(n) = 2^(6n+5).

%C Additive digital root of a(n) = 5.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="http://oeis.org/index/Di#divseq">Index to divisibility sequences</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (64).

%F a(n) = 64*a(n-1).

%F G.f.: 32/(1-64*x). - _Vincenzo Librandi_, Oct 30 2016

%t CoefficientList[Series[32 / (1 - 64 x), {x, 0, 20}], x] (* _Vincenzo Librandi_, Oct 30 2016 *)

%K nonn

%O 0,1

%A _Miquel Cerda_, Oct 28 2016