login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 5-2*sqrt(5)+sqrt(25-10*sqrt(5))-sqrt(5-2*sqrt(5)).
0

%I #9 Aug 21 2023 12:16:18

%S 1,4,2,5,9,1,9,9,9,8,1,5,9,5,9,1,3,5,2,0,6,5,5,4,2,9,6,6,1,3,2,5,0,1,

%T 1,0,4,2,7,7,1,8,8,2,4,5,4,1,9,1,1,5,5,9,0,2,4,7,1,6,2,7,7,7,5,1,6,5,

%U 7,3,2,6,1,6,8,2,4,3,1,8,5,4,3,6,4,0,3

%N Decimal expansion of 5-2*sqrt(5)+sqrt(25-10*sqrt(5))-sqrt(5-2*sqrt(5)).

%C Largest radius of five circles tangent to a circle of radius 1.

%C A quartic integer with minimal polynomial x^4 - 20x^3 + 10x^2 + 20x + 5. - _Charles R Greathouse IV_, Oct 12 2016

%H Eric W. Weisstein: <a href="http://mathworld.wolfram.com/SteinerChain.html">Steiner chain.</a> From MathWorld. A Wolfram Web Resource.

%H <a href="/index/Al#algebraic_04">Index entries for algebraic numbers, degree 4</a>

%F tan(Pi/5)*(tan(Pi/5)+sqrt(1+tan(Pi/5)^2)).

%e 1.42591999815959135206...

%t RealDigits[5-2*Sqrt[5]+Sqrt[25-10*Sqrt[5]]-Sqrt[5-2*Sqrt[5]],10,120][[1]] (* _Harvey P. Dale_, May 20 2021 *)

%o (PARI) s=sqrt(5); t=5-2*s; sqrt(25-10*s)+t-sqrt(t) \\ _Charles R Greathouse IV_, Oct 12 2016

%Y Cf. A176394 (three circles), A014176 (four circles).

%K nonn,cons

%O 1,2

%A _Martin Renner_, Oct 12 2016