login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).
1

%I #16 Jan 30 2020 21:29:17

%S 1,1,2,10,40,296,1936,17872,164480,1820800,21442816,279255296,

%T 3967316992,59837670400,988024924160,17009993230336,318566665977856,

%U 6177885274406912,129053377688043520,2786107670662021120,64136976817284448256,1525720008470138454016

%N E.g.f.: exp(x/(1-x^2))/sqrt(1-x^2).

%C Is this the same as A227545 (at least for n>=1)?

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HermitePolynomial.html">Hermite Polynomial</a>.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Hermite_polynomials">Hermite polynomials</a>.

%F a(n) = |H_n((1+i)/2)|^2 / 2^n = H_n((1+i)/2) * H_n((1-i)/2) / 2^n, where H_n(x) is n-th Hermite polynomial, i = sqrt(-1).

%F D-finite with recurrence: (n+1)*(n+2)*(a(n) - n^2*a(n-1)) + (2*n^2+7*n+6)*a(n+1) + a(n+2) = a(n+3).

%F a(n) ~ n^n * exp(sqrt(2*n)-n) / 2. - _Vaclav Kotesovec_, Oct 14 2016

%t Table[Abs[HermiteH[n, (1 + I)/2]]^2/2^n, {n, 0, 20}]

%Y Cf. A000321, A000898, A059343, A062267, A067994, A227545, A277280, A277281, A277378.

%K nonn

%O 0,3

%A _Vladimir Reshetnikov_, Oct 11 2016