Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Oct 26 2016 15:17:42
%S 1,1,1,1,1,2,1,1,1,2,2,3,1,4,1,1,1,2,2,9,2,12,3,6,1,6,4,9,1,8,1,1,1,2,
%T 2,18,2,20,9,24,2,32,12,30,3,40,6,12,1,12,6,45,4,60,9,24,1,18,8,27,1,
%U 16,1,1,1,2,2,36,2,60,18,48,2,72,20,160,9,140,24,72,2,96,32,200,12,240,30,140,3,120,40,160,6,160,12,24,1
%N Product of nonzero coefficients of the n-th Stern polynomial.
%C a(n) = product of nonzero terms on the n-th row of A125184.
%H Antti Karttunen, <a href="/A277325/b277325.txt">Table of n, a(n) for n = 0..8192</a>
%F a(n) = A005361(A260443(n)).
%F a(n) = A227349(A277020(n)).
%F a(2n) = a(n).
%F a(n) >= A277326(n).
%o (Scheme)
%o (define (A277325 n) (A005361 (A260443 n)))
%o ;; A standalone implementation:
%o (define (A277325 n) (reduce * 1 (filter positive? (A260443as_coeff_list n))))
%o (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))
%o (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))
%Y Cf. A005361, A125184, A227349, A260443, A277020.
%Y Cf. also A277326 (lcm of nonzero coefficients) and A002487 (their sum).
%K nonn
%O 0,6
%A _Antti Karttunen_, Oct 13 2016