login
A277268
If we call "T" this sequence and consider the k-digit term a(n) of T with digits abcd...k, then a(n+1) = [a(n) + the a-th digit of T + the b-th digit of T + the c-th digit of T + ... + the k-th digit of T]. This is the lexicographically first such infinite sequence containing no duplicate term.
2
11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 45, 49, 53, 55, 57, 59, 61, 67, 73, 75, 77, 79, 81, 89, 97, 99, 101, 103, 105, 107, 109, 111, 114, 119, 122, 125, 128, 137, 140, 144, 151, 154, 159, 162, 169, 176, 183, 192, 195, 198, 207, 209, 211, 214, 219, 222, 225, 228, 237, 240, 244, 251, 254, 259, 262, 269, 276, 283, 292, 295, 298, 307
OFFSET
1,1
COMMENTS
There are 3 lexicographically earlier sequences with this property, but they all stop at some point. The first one is A276514, starting with 5,10,15,25,31,... and halting with a(49) = 300. The second one starts with 9,10,19,29,31,... and stops with a(246) = 3003. The third one starts with 10,11,13,15,17,... and ends with a(8) = 22, as shown here: 10, 11, 13, 15, 17, 19, 21, 22. [To compute a hypothetical a(9), one has to add to 22 the second digit of the sequence (which is zero) and (again) the second digit of the sequence (again zero): 22+0+0 = 22.]
As this sequence, starting with 11, 13, 15, 17, 19, ..., shows no zero digit among its first 10 digits, it will never stop.
LINKS
EXAMPLE
To compute a(2), add to a(1) the 1st digit of T and the 1st digit of T, so a(2) = 11+1+1 = 13;
to compute a(3), add to a(2) the 1st digit of T and the 3rd digit of T, so a(3) = 13+1+1 = 15;
to compute a(4), add to a(3) the 1st digit of T and the 5th digit of T, so a(4) = 15+1+1 = 17;
to compute a(5), add to a(4) the 1st digit of T and the 7th digit of T, so a(5) = 17+1+1 = 19;
to compute a(6), add to a(5) the 1st digit of T and the 9th digit of T, so a(6) = 19+1+1 = 21;
to compute a(7), add to a(6) the 2nd digit of T and the 1st digit of T, so a(7) = 19+1+1 = 23;
etc.
CROSSREFS
Cf. A276514.
Sequence in context: A358076 A292513 A171491 * A337254 A152200 A277694
KEYWORD
nonn,base
AUTHOR
STATUS
approved