login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of decimal digits of sum of divisors of n.
2

%I #12 Sep 08 2022 08:46:17

%S 1,3,4,7,6,2,8,5,3,8,2,16,4,8,8,3,8,27,0,8,6,18,8,0,3,8,0,30,0,14,6,

%T 18,32,20,32,9,24,0,30,0,8,54,16,32,56,14,32,8,35,27,14,72,20,0,14,0,

%U 0,0,0,48,12,54,0,14,32,16,48,12,54,16,14,45,28,4,8

%N Product of decimal digits of sum of divisors of n.

%C Conjecture: a(n) = n only for numbers 1 and 210; sigma(210) = 576; a(210) = 5*7*6 = 210.

%H Jaroslav Krizek, <a href="/A277216/b277216.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A007954(A000203(n)).

%e a(12) = 16 because sigma(12) = 28; 2*8 = 16.

%p seq( convert(convert(numtheory:-sigma(n),base,10),`*`), n=1..100); # _Robert Israel_, Oct 06 2016

%t Table[Times @@ IntegerDigits@ DivisorSigma[1, n], {n, 75}] (* _Michael De Vlieger_, Oct 06 2016 *)

%o (Magma) [&*Intseq(SumOfDivisors(n)): n in [1..100000]]

%o (PARI) a(n) = d = digits(sigma(n)); prod(k=1, #d, d[k]); \\ _Michel Marcus_, Oct 05 2016

%Y Cf. A067342 (sum of decimal digits of sigma(n)).

%Y Cf. A000203, A007954, A277217.

%K nonn,base

%O 1,2

%A _Jaroslav Krizek_, Oct 05 2016