login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers k in range [n^2, ((n+1)^2)-1] for which 3 = the least number of squares that add up to k (A002828).
4

%I #12 Oct 05 2016 10:19:30

%S 0,1,1,3,4,4,6,6,8,9,9,12,11,14,15,14,17,18,19,19,23,20,24,25,25,26,

%T 29,29,30,32,32,32,36,36,37,39,41,40,42,43,45,45,47,46,50,49,50,54,52,

%U 55,56,57,60,60,63,60,62,65,68,64,67,70,72,69,73,74,75,76,78,78,80,84,79,85,84,84,88,89,90,90,91,94,94,97,94,99

%N Number of integers k in range [n^2, ((n+1)^2)-1] for which 3 = the least number of squares that add up to k (A002828).

%H Antti Karttunen, <a href="/A277193/b277193.txt">Table of n, a(n) for n = 0..512</a>

%F Sum_{i=n^2 .. ((n+1)^2)-1} (1-A010052(i))*(1-A229062(i))*(1-A072401(i)).

%F Other identities. For all n >= 0:

%F 1 + A077773(n) + a(n) + A277194(n) = 2n+1.

%F For n >= 1, a(n) = A277191(n)-1.

%o (Scheme)

%o (define (A277193 n) (add (lambda (i) (* (- 1 (A010052 i)) (- 1 (A229062 i)) (- 1 (A072401 i)))) (A000290 n) (+ -1 (A000290 (+ 1 n)))))

%o ;; Implements sum_{i=lowlim..uplim} intfun(i)

%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

%Y Cf. A000290, A002828, A010052, A072401, A077773, A229062, A277194.

%Y After the initial zero, one less than A277191.

%K nonn

%O 0,4

%A _Antti Karttunen_, Oct 04 2016