login
Number of integers k in range [n^2, ((n+1)^2)-1] for which the least number of squares that add up to k (A002828) is even.
5

%I #6 Oct 05 2016 10:19:21

%S 1,1,3,3,4,6,6,8,8,9,11,10,13,12,13,16,15,16,17,19,17,22,20,21,23,24,

%T 23,25,26,26,28,30,28,30,31,31,31,34,34,35,35,37,37,40,38,41,42,40,44,

%U 43,44,45,44,46,45,50,50,49,48,54,53,52,52,57,55,56,57,58,58,60,60,58,65,61,64,66,64,65,66,68,69,68,70,69

%N Number of integers k in range [n^2, ((n+1)^2)-1] for which the least number of squares that add up to k (A002828) is even.

%H Antti Karttunen, <a href="/A277192/b277192.txt">Table of n, a(n) for n = 0..512</a>

%F a(n) = Sum_{i=n^2 .. ((n+1)^2)-1} (1-A000035(A002828(i))).

%F For all n >= 0, A277191(n) + a(n) = 2n+1.

%F For n >= 1, a(n) = A077773(n) + A277194(n).

%o (Scheme)

%o (define (A277192 n) (add (lambda (i) (- 1 (A000035 (A002828 i)))) (A000290 n) (+ -1 (A000290 (+ 1 n)))))

%o ;; Implements sum_{i=lowlim..uplim} intfun(i)

%o (define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))

%Y Cf. A000035, A000290, A002828, A077773, A277191, A277194.

%K nonn

%O 0,3

%A _Antti Karttunen_, Oct 04 2016