%I #48 Oct 22 2016 12:41:15
%S 1,-1,1,-1,1,-3,1,-1,25,-1,1,-49,1,-1,9,-3,1,-363,3025,-1,169,-169,1,
%T -3,1,-49,289,-289,7225,-361,361,-361,1,-1,1,-529,529,-529,330625,
%U -148225,3025,-675,9,-3,7569,-2523,142129,-409757907,808201,-961,8649,-2883,1,-147
%N Numerator of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1).
%C Neil Calkin found the closed forms of 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) in 2007.
%D Jonathan Borwein, David Bailey, Mathematics by Experiment, 2nd Edition: Plausible Reasoning in the 21st Century.
%H Seiichi Manyama, <a href="/A277170/b277170.txt">Table of n, a(n) for n = 0..1000</a>
%F (s(n) =) 3F2([3*n, -n, n+1],[2*n+1, n+1/2], 1) = a(n) / A277520(n).
%F s(2k) = (A005810(k) / A066802(k))^2 = (((4k)! * (3k)!) / ((6k)! * k!))^2.
%F s(2k+1) = -1/3 * (A052203(k) / A187364(k))^2 = -1/3 * (((4k+1)! * (3k)!) / ((6k+1)! * k!))^2.
%t a[n_] := HypergeometricPFQ[{3n, -n, n+1}, {2n+1, n+1/2}, 1] // Numerator; Table[a[n], {n, 0, 53}] (* _Jean-François Alcover_, Oct 22 2016 *)
%Y Cf. A005810, A066802, A052203, A187364, A277520.
%K sign,frac
%O 0,6
%A _Seiichi Manyama_, Oct 19 2016