login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n containing no part i of multiplicity i+1.
6

%I #9 Sep 30 2016 21:12:43

%S 1,1,1,3,4,6,8,12,18,24,32,45,59,79,104,137,177,229,295,377,477,605,

%T 761,956,1193,1484,1840,2276,2800,3441,4210,5141,6261,7603,9206,11132,

%U 13419,16144,19380,23223,27763,33134,39467,46931,55703,66008,78085,92239,108776,128091,150617

%N Number of partitions of n containing no part i of multiplicity i+1.

%H Alois P. Heinz, <a href="/A277099/b277099.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A276433(n,0).

%F G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^(i*(i+1))).

%e a(4) = 4 because we have [1,1,1,1], [1,3], [2,2], and [4]; the partition [1,1,2] does not qualify.

%p g:= product(1/(1-x^i)-x^(i*(i+1)), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);

%p # second Maple program:

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

%p add(`if`(i+1=j, 0, b(n-i*j, i-1)), j=0..n/i)))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Sep 30 2016

%t nmax = 50; CoefficientList[Series[Product[(1/(1-x^k) - x^(k*(k+1))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 30 2016 *)

%Y Cf. A276427, A276428, A276429, A276433, A276434, A277100, A277101, A277102.

%K nonn

%O 0,4

%A _Emeric Deutsch_, Sep 30 2016