login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of primes <= n-th Lucas number.
5

%I #18 Jun 10 2024 08:52:50

%S 1,0,2,2,4,5,7,10,15,21,30,46,66,98,146,218,329,500,757,1158,1766,

%T 2716,4164,6420,9907,15320,23760,36878,57356,89288,139283,217506,

%U 340059,532321,834147,1308186,2053958,3227229,5075229,7987852,12581575,19831014

%N Number of primes <= n-th Lucas number.

%H Amiram Eldar, <a href="/A277062/b277062.txt">Table of n, a(n) for n = 0..101</a> (calculated using Kim Walisch's primecount)

%H Kim Walisch, <a href="https://github.com/kimwalisch/primecount">Fast C++ prime counting function implementation (primecount)</a>.

%F a(n) = A000720(A000032(n)). - _Michel Marcus_, Jun 10 2024

%p a:= n-> numtheory[pi]((<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]):

%p seq(a(n), n=0..35); # _Alois P. Heinz_, Nov 09 2016

%t Table[PrimePi[LucasL[n]], {n, 0, 50}]

%o (Magma) [#PrimesUpTo(Lucas(n)): n in [0..41]];

%Y Cf. A000032, A000720, A001606, A005479, A052012, A054782.

%K nonn

%O 0,3

%A _Vincenzo Librandi_, Nov 09 2016