login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = floor(n/(1-3/Pi)).
2

%I #23 Nov 05 2016 08:46:42

%S 22,44,66,88,110,133,155,177,199,221,244,266,288,310,332,355,377,399,

%T 421,443,465,488,510,532,554,576,599,621,643,665,687,710,732,754,776,

%U 798,820,843,865,887,909,931,954,976,998,1020,1042,1065,1087,1109,1131,1153,1175

%N a(n) = floor(n/(1-3/Pi)).

%H Charles R Greathouse IV, <a href="/A277051/b277051.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%F a(n) = floor(n/(1-3/Pi)).

%e For n = 10 we have that floor(10/(1-3/Pi)) = floor(10/0.04719755...) = floor(211.8754045...) so a(10) = 221.

%p A277051:=n->floor(n/(1-3/Pi)): seq(A277051(n), n=1..100); # _Wesley Ivan Hurt_, Sep 26 2016

%t f[n_] := Floor[n/(1-3/Pi)]; Array[f, 100, 1]

%o (Maxima) makelist(floor(n / (1-3 / %pi )), n, 1, 100);

%o (PARI) a(n)=n\(1-3/Pi) \\ _Charles R Greathouse IV_, Sep 26 2016

%Y Complement of A274399.

%Y Cf. A000796, A019670.

%K nonn,easy

%O 1,1

%A _Paulo Romero Zanconato Pinto_, Sep 26 2016