login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Klarner-Rivest polyomino constant.
3

%I #36 Sep 27 2016 16:00:37

%S 2,3,0,9,1,3,8,5,9,3,3,3,0,4,9,4,7,3,1,0,9,8,7,2,0,3,0,5,0,1,7,2,1,2,

%T 5,3,1,9,1,1,8,1,4,4,7,2,5,8,1,6,2,8,4,0,1,6,9,4,4,0,2,9,0,0,2,8,4,4,

%U 5,6,4,4,0,7,4,8,3,1,6,8,4,2,7,1,7,2,8,1,6,1,5,7,7,4,4,1,2,1,7,4,3,7,4,6,1

%N Decimal expansion of the Klarner-Rivest polyomino constant.

%C Analytic Combinatorics (Flajolet and Sedgewick, 2009, p. 662) has a wrong value of this constant (2.309138593331230...).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.19 (Klarner's polyomino constant), p. 380.

%H E. A. Bender, <a href="http://dx.doi.org/10.1016/0012-365X(74)90134-4">Convex n-ominoes</a>, Discrete Math., 8 (1974), 219-226.

%H P. Flajolet and R. Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/books.html">Analytic Combinatorics</a>, 2009, p. 662.

%H D. A. Klarner and R. L. Rivest, <a href="http://people.csail.mit.edu/rivest/pubs/KR74.pdf">Asymptotic bounds for the number of convex n-ominoes</a>, Discrete Math., 8 (1974), 31-40.

%F Equals lim n -> infinity A006958(n)^(1/n).

%F 1/A276994 = 0.4330619231293906645846169654189837... is the smallest positive root of the equation Sum_{n>=0} ((-1)^n * z^(n*(n+1)/2) / (Product_{k=1..n} 1-z^k)^2) = 0.

%e 2.309138593330494731098720305017212531911814472581628401694402900284456440748...

%t 1/z/.FindRoot[Sum[(-1)^n * z^(n*(n+1)/2) / QPochhammer[z, z, n]^2, {n, 0, 1000}], {z, 2/5}, WorkingPrecision -> 120]

%Y Cf. A006958.

%K nonn,cons

%O 1,1

%A _Vaclav Kotesovec_, Sep 27 2016