login
Square array A(row,col) read by antidiagonals: A(1,col) = A276155(col), and for row > 1, A(row,col) = A276154(A(row-1,col)); Dispersion of primorial base left shift A276154 (array transposed).
9

%I #11 Sep 24 2016 10:48:21

%S 1,3,2,4,8,6,5,12,36,30,7,14,60,240,210,9,32,66,420,2520,2310,10,38,

%T 216,450,4620,32340,30030,11,42,246,2340,4830,60060,540540,510510,13,

%U 44,270,2550,30240,62370,1021020,10210200,9699690,15,62,276,2730,32550,512820,1051050,19399380,232792560,223092870

%N Square array A(row,col) read by antidiagonals: A(1,col) = A276155(col), and for row > 1, A(row,col) = A276154(A(row-1,col)); Dispersion of primorial base left shift A276154 (array transposed).

%C The array A(row,col) is read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

%C Entries on row n are all multiples of A002110(n-1).

%H Antti Karttunen, <a href="/A276943/b276943.txt">Table of n, a(n) for n = 1..630; the first 35 antidiagonals of array</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%H <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>

%F A(1,col) = A276155(col); for row > 1, A(row,col) = A276154(A(row-1,col)).

%e The top left corner of the array:

%e 1, 3, 4, 5, 7, 9, 10, 11, 13, 15, 16

%e 2, 8, 12, 14, 32, 38, 42, 44, 62, 68, 72

%e 6, 36, 60, 66, 216, 246, 270, 276, 426, 456, 480

%e 30, 240, 420, 450, 2340, 2550, 2730, 2760, 4650, 4860, 5040

%e 210, 2520, 4620, 4830, 30240, 32550, 34650, 34860, 60270, 62580, 64680

%o (Scheme)

%o (define (A276943 n) (A276943bi (A002260 n) (A004736 n)))

%o (define (A276943bi row col) (if (= 1 row) (A276155 col) (A276154 (A276943bi (- row 1) col))))

%Y Inverse permutation: A276944.

%Y Transpose: A276945.

%Y Column 1: A002110, Row 1: A276155.

%Y Cf. A276154.

%Y Cf. also array A276953.

%K nonn,base,tabl

%O 1,2

%A _Antti Karttunen_, Sep 24 2016