login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14

%I #15 Sep 08 2021 07:11:13

%S 1,0,1,0,2,1,0,6,6,1,0,24,42,8,1,0,120,330,80,10,1,0,720,2970,860,120,

%T 12,1,0,5040,30240,10290,1540,168,14,1,0,40320,345240,136080,21490,

%U 2464,224,16,1,0,362880,4377240,1977360,326970,38808,3696,288,18,1

%N Number T(n,k) of ordered set partitions of [n] where the maximal block size equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A276922/b276922.txt">Rows n = 0..140, flattened</a>

%F E.g.f. for column k>0: 1/(1-Sum_{i=1..k} x^i/i!) - 1/(1-Sum_{i=1..k-1} x^i/i!).

%F T(n,k) = A276921(n,k) - A276921(n,k-1) for k>0. T(n,0) = A000007(0).

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 2, 1;

%e 0, 6, 6, 1;

%e 0, 24, 42, 8, 1;

%e 0, 120, 330, 80, 10, 1;

%e 0, 720, 2970, 860, 120, 12, 1;

%e 0, 5040, 30240, 10290, 1540, 168, 14, 1;

%e 0, 40320, 345240, 136080, 21490, 2464, 224, 16, 1;

%e ...

%p A:= proc(n, k) option remember; `if`(n=0, 1, add(

%p A(n-i, k)*binomial(n, i), i=1..min(n, k)))

%p end:

%p T:= (n, k)-> A(n, k) -`if`(k=0, 0, A(n, k-1)):

%p seq(seq(T(n, k), k=0..n), n=0..10);

%t A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[A[n - i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]]; Table[T[n, k], {n, 0, 10}, { k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 11 2017, translated from Maple *)

%Y Columns k=0-10 give: A000007, A000142 (for n>0), A320758, A320759, A320760, A320761, A320762, A320763, A320764, A320765, A320766.

%Y Row sums give A000670.

%Y T(2n,n) gives A276923.

%Y Cf. A080510, A276921.

%K nonn,tabl

%O 0,5

%A _Alois P. Heinz_, Sep 22 2016