Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Jan 01 2022 04:44:52
%S 1,1,0,1,1,0,1,1,2,0,1,1,3,6,0,1,1,3,12,24,0,1,1,3,13,66,120,0,1,1,3,
%T 13,74,450,720,0,1,1,3,13,75,530,3690,5040,0,1,1,3,13,75,540,4550,
%U 35280,40320,0,1,1,3,13,75,541,4670,45570,385560,362880,0
%N Number A(n,k) of ordered set partitions of [n] with at most k elements per block; square array A(n,k), n>=0, k>=0, read by antidiagonals.
%H Alois P. Heinz, <a href="/A276921/b276921.txt">Antidiagonals n = 0..140, flattened</a>
%H Daniel Birmajer, Juan B. Gil, David S. Kenepp, and Michael D. Weiner, <a href="https://arxiv.org/abs/2108.04302">Restricted generating trees for weak orderings</a>, arXiv:2108.04302 [math.CO], 2021.
%F E.g.f. of column k: 1/(1-Sum_{i=1..k} x^i/i!).
%F A(n,k) = Sum_{j=0..k} A276922(n,j).
%e Square array A(n,k) begins:
%e 1, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 1, 1, 1, 1, 1, 1, 1, ...
%e 0, 2, 3, 3, 3, 3, 3, 3, ...
%e 0, 6, 12, 13, 13, 13, 13, 13, ...
%e 0, 24, 66, 74, 75, 75, 75, 75, ...
%e 0, 120, 450, 530, 540, 541, 541, 541, ...
%e 0, 720, 3690, 4550, 4670, 4682, 4683, 4683, ...
%e 0, 5040, 35280, 45570, 47110, 47278, 47292, 47293, ...
%p A:= proc(n, k) option remember; `if`(n=0, 1, add(
%p A(n-i, k)*binomial(n, i), i=1..min(n, k)))
%p end:
%p seq(seq(A(n, d-n), n=0..d), d=0..12);
%t A[n_, k_] := A[n, k] = If[n==0, 1, Sum[A[n-i, k]*Binomial[n, i], {i, 1, Min[n, k]}]]; Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* _Jean-François Alcover_, Feb 03 2017, translated from Maple *)
%Y Columns k=0..10 give: A000007, A000142, A080599, A189886, A276924, A276925, A276926, A276927, A276928, A276929, A276930.
%Y Main diagonal gives A000670.
%Y Cf. A276922.
%K nonn,tabl
%O 0,9
%A _Alois P. Heinz_, Sep 22 2016