login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

L.g.f.: Sum_{n>=1} [ Sum_{k>=1} k^(2*n) * x^k ]^n / n.
4

%I #9 Sep 18 2016 15:49:29

%S 1,9,76,1157,33291,1792296,196919213,39766253741,16931726147956,

%T 13298466280839329,22076711237844558263,69166686377284889199104,

%U 448760359479425463648647769,5685081590883001302122022078913,144528951819771627855280850227089996,7431791795502279858136165452572662669213,743200333842768450767851829731370148558347843,154769006272445896954868694741314742556915451805336

%N L.g.f.: Sum_{n>=1} [ Sum_{k>=1} k^(2*n) * x^k ]^n / n.

%C L.g.f. equals the logarithm of the g.f. of A276752.

%H Paul D. Hanna, <a href="/A276754/b276754.txt">Table of n, a(n) for n = 1..100</a>

%F L.g.f.: Sum_{n>=1} [ Sum_{k=1..2*n-1} A008292(2*n,k) * x^k / (1-x)^(2*n+1) ]^n / n, where A008292 are the Eulerian numbers.

%e L.g.f.: A(x) = x + 9*x^2/2 + 76*x^3/3 + 1157*x^4/4 + 33291*x^5/5 + 1792296*x^6/6 + 196919213*x^7/7 + 39766253741*x^8/8 + 16931726147956*x^9/9 + 13298466280839329*x^10/10 +...

%e such that A(x) equals the series:

%e A(x) = Sum_{n>=1} (x + 2^(2*n)*x^2 + 3^(2*n)*x^3 +...+ k^(2*n)*x^k +...)^n/n.

%e This logarithmic series can be written using the Eulerian numbers like so:

%e A(x) = (x + x^2)/(1-x)^3 + (x + 11*x^2 + 11*x^3 + x^4)^2/(1-x)^10/2 + (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^3/(1-x)^21/3 + (x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)^4/(1-x)^36/4 + (x + 1013*x^2 + 47840*x^3 + 455192*x^4 + 1310354*x^5 + 1310354*x^6 + 455192*x^7 + 47840*x^8 + 1013*x^9 + x^10)^5/(1-x)^55/5 + (x + 4083*x^2 + 478271*x^3 + 10187685*x^4 + 66318474*x^5 + 162512286*x^6 + 162512286*x^7 + 66318474*x^8 + 10187685*x^9 + 478271*x^10 + 4083*x^11 + x^12)^6/(1-x)^78/6 +...+ [ Sum_{k=1..2*n} A008292(2*n,k) * x^k ]^n / (1-x)^(2*n^2+n) /n +...

%e where

%e exp(A(x)) = 1 + x + 5*x^2 + 30*x^3 + 327*x^4 + 7085*x^5 + 307280*x^6 + 28472653*x^7 + 5000661017*x^8 + 1886425568702*x^9 + 1331753751874235*x^10 +...+ A276752(n)*x^n +...

%o (PARI) {a(n) = n * polcoeff( sum(m=1, n, sum(k=1, n, k^(2*m)*x^k +x*O(x^n))^m/m ), n)}

%o for(n=1, 20, print1(a(n), ", "))

%o (PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}

%o {a(n) = my(A=1, Oxn=x*O(x^n)); A = sum(m=1, n+1, sum(k=1, 2*m, A008292(2*m, k)*x^k/(1-x +Oxn)^(2*m+1) )^m / m ); n * polcoeff(A, n)}

%o for(n=1, 20, print1(a(n), ", "))

%Y Cf. A156170, A276753, A008292.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Sep 17 2016