Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 May 27 2020 13:00:12
%S 3,5,7,8,27,29,187,596,4827,106625,2770267,511908608,294867810267,
%T 1417828655948069,150943952469132130267,418071880169258361764894156,
%U 214012660834726939177944668730210267,63105422008735225121538219609433904551328809385
%N a(n) = a(n-2)*a(n-3) - a(n-1); a(0) = 3, a(1) = 5, a(2) = 7.
%H Harvey P. Dale, <a href="/A276693/b276693.txt">Table of n, a(n) for n = 0..27</a>
%F a(n) ~ c^(d^n), where c = 2.46982021132238000769..., d = A060006 = (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.32471795724474602596..., real root of the equation d*(d^2-1) = 1. - _Vaclav Kotesovec_, Oct 04 2016
%t RecurrenceTable[{a[n] == a[n-2]*a[n-3]-a[n-1], a[0] == 3,a[1]==5,a[2]==7}, a, {n,0, 17}]
%t nxt[{a_,b_,c_}]:={b,c,a*b-c}; NestList[nxt,{3,5,7},20][[All,1]] (* _Harvey P. Dale_, May 27 2020 *)
%o (C) int seq(int n) {int v = 3; if(n <= 2) {v = 3+2*n;} else {v = seq(n-2)*seq(n-3) - seq(n-1);} return v;}
%K nonn
%O 0,1
%A _Christopher C. Capobianco_, Sep 13 2016