OFFSET
2,1
LINKS
V. Shevelev, Several results on sequences which are similar to the positive integers, arXiv:0904.2101 [math.NT], 2009.
Vladimir Shevelev, Peter J. C. Moses, Constellations of primes generated by twin primes, arXiv:1610.03385 [math.NT], 2016.
EXAMPLE
Triangle begins
2;
11,2;
47,47,2;
47,47,11,2;
47,47,17,17,2;
683,683,683,683,683,2;
683,683,683,683,683,11,2;
683,683,683,683,683,17,17,2;
683,683,683,683,683,467,467,467,2;
683,683,683,683,683,467,467,467,11,2;
683,683,683,683,683,467,467,467,79,79,2;
683,683,683,683,683,467,467,467,79,79,17,2;
683,683,683,683,683,467,467,467,79,79,41,41,2;
683,683,683,683,683,467,467,467,79,79,41,41,11,2;
683,683,683,683,683,467,467,467,79,79,41,41,17,17,2;
683,683,683,683,683,467,467,467,107,107,107,107,107,107,107,2;
683,683,683,683,683,467,467,467,107,107,107,107,107,107,107,11,2;
The first column forms A229019.
MATHEMATICA
f[n_, r_] := Block[{a}, a[2] = n; a[x_] := a[x] = If[PrimeQ@ x, NextPrime@ a[x - 1], NestWhile[# + 1 &, a[x - 1] + 1, PrimeQ@ # &]]; Map[a, Range[2, r]]]; nn = 10^4; Table[1 + First@ Flatten@ Position[BitXor[f[Prime@ n, nn], f[Prime@ k, nn]], 0], {n, 2, 12}, {k, 2, n}] // Flatten (* Michael De Vlieger, Sep 13 2016, after Peter J. C. Moses at A159559 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Vladimir Shevelev, Sep 13 2016
EXTENSIONS
More terms from Peter J. C. Moses, Sep 13 2016
STATUS
approved