login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = the smallest number k>1 such that floor(Sum_{p|k} 0.p) = n where p runs through the prime divisors of k.
6

%I #29 Sep 08 2022 08:46:17

%S 2,21,2905,281785,47740490,9178864590,8533159052845,1817562878255985,

%T 1801204812351681135,787408225243814333670

%N a(n) = the smallest number k>1 such that floor(Sum_{p|k} 0.p) = n where p runs through the prime divisors of k.

%C Here 0.p means the decimal fraction obtained by writing p after the decimal point, e.g. 0.11 = 11/100.

%C The first few values of Sum_{p|n} 0.p are: 1/5, 3/10, 1/5, 1/2, 1/2, 7/10, 1/5, 3/10, 7/10, ...

%C Subsequence of A005117. - _Chai Wah Wu_, Sep 15 2016

%e Number 2905 is the smallest number k with floor(Sum_{p|k} 0.p) = 2; set of prime divisors of 2905: {5, 7, 83}; floor(Sum_{p|2905} 0.p) = 0.5 + 0.7 + 0.83 = floor(2.03) = 2.

%t Table[k = 2; While[f = FactorInteger[k][[All, 1]];

%t Floor[Total[f*10^-IntegerLength[f]]] != n, k++];

%t k, {n, 0, 3}] (* _Robert Price_, Sep 20 2019 *)

%o (Magma) A276654:=func<n|exists(r){k:k in[2..1000000] | Floor(&+[d / (10^(#Intseq(d))): d in PrimeDivisors(k)]) eq n}select r else 0>; [A276654(n): n in[0..3]]

%Y Cf. A005117, A276513, A276651, A276652, A276653, A276655.

%K nonn,base,more

%O 0,1

%A _Jaroslav Krizek_, Sep 11 2016

%E a(4) from _Michel Marcus_, Sep 11 2016

%E a(5)-a(9) from _Giovanni Resta_, Aug 31 2019