login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Values of k such that k^2 + 9 is a triangular number (A000217).
5

%I #19 Sep 08 2022 08:46:17

%S 1,6,12,37,71,216,414,1259,2413,7338,14064,42769,81971,249276,477762,

%T 1452887,2784601,8468046,16229844,49355389,94594463,287664288,

%U 551336934,1676630339,3213427141,9772117746,18729225912,56956076137,109161928331,331964339076

%N Values of k such that k^2 + 9 is a triangular number (A000217).

%H Colin Barker, <a href="/A276601/b276601.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,0,-1).

%F a(n) = 6*a(n-2) - a(n-4) for n>4.

%F G.f.: x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)).

%F a(n) = (1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))), where P(n) = A000129(n). - _G. C. Greubel_, Sep 15 2021

%e 6 is in the sequence because 6^2+9 = 45, which is a triangular number.

%t CoefficientList[Series[(1+x)*(1+5*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 07 2016 *)

%t LinearRecurrence[{0,6,0,-1}, {1,6,12,37}, 31] (* _G. C. Greubel_, Sep 15 2021 *)

%o (PARI) Vec(x*(1+x)*(1+5*x+x^2) / ((1+2*x-x^2)*(1-2*x-x^2)) + O(x^40))

%o (Magma) I:=[1,6,12,37]; [n le 2 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..31]]; // _G. C. Greubel_, Sep 15 2021

%o (Sage)

%o def P(n): return lucas_number1(n, 2, -1)

%o [(1/4)*(5*P(n+1) - P(n) + (-1)^n*(P(n-1) + 5*P(n-2))) for n in (1..30)] # _G. C. Greubel_, Sep 15 2021

%Y Cf. A000129, A000217, A230044.

%Y Cf. A001109 (k=0), A106328 (k=1), A077241 (k=2), A276598 (k=3), A276599 (k=5), A276600 (k=6), A276602 (k=10), where k is the value added to n^2.

%K nonn,easy

%O 1,2

%A _Colin Barker_, Sep 07 2016