login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = smallest prime p such that (smallest prime > p^2) == p^2 + 4n^2, n>=1.
0

%I #24 Apr 28 2017 07:36:09

%S 5,281,461,4937,25367,75997,1193909,3464389,48591863,23674667,

%T 22486333,1648510979,12708853771,25139472583,53498475287

%N a(n) = smallest prime p such that (smallest prime > p^2) == p^2 + 4n^2, n>=1.

%e 5^2+4*1^2=29, 281^2+4*2^2=78977, 461^2 + 4*3^2=212557 (all prime).

%t Table[p = 2; While[NextPrime[p^2] != p^2 + 4 n^2, p = NextPrime@ p]; p, {n, 8}] (* _Michael De Vlieger_, Apr 22 2017 *)

%o (PARI) a(n) = {forprime(p=2, , if (nextprime(p^2+1) == p^2 + 4*n^2, return (p)););} \\ _Michel Marcus_, Apr 19 2017

%Y Cf. A007491, A053000.

%K nonn,more

%O 1,1

%A _Zak Seidov_, Apr 18 2017

%E a(13)-a(15) from _Rémy Sigrist_, Apr 28 2017