login
A276465
Divisors of 16450.
4
1, 2, 5, 7, 10, 14, 25, 35, 47, 50, 70, 94, 175, 235, 329, 350, 470, 658, 1175, 1645, 2350, 3290, 8225, 16450
OFFSET
1,2
COMMENTS
Conjecture: 16450 is the only number such that Sum_{d | n} 0.d is an integer, where 0.d means the decimal fraction of divisors d of n obtained by writing d after the decimal point:
0.1 + 0.2 + 0.5 + 0.7 + 0.10 + 0.14 + 0.25 + 0.35 + 0.47 + 0.50 + 0.70 + 0.94 + 0.175 + 0.235 + 0.329 + 0.350 + 0.470 + 0.658 + 0.1175 + 0.1645 + 0.2350 + 0.3290 + 0.8225 + 0.16450 = 9.
There are no other numbers with this property <= 5*10^7.
FORMULA
A276467(16450) = 1.
MATHEMATICA
Divisors@ 16450 (* generates sequence *)
Total@(#*1/10^(1 + Floor@ Log10@ #)) &@ Divisors@ 16450 (* illustrates comment, Michael De Vlieger, Sep 04 2016 *)
PROG
(Magma) Divisors(16450)
(PARI) divisors(16450) \\ Michel Marcus, Sep 04 2016
CROSSREFS
Subsequences include A018262, A018270, A018319, A018406, A018472, and A018577.
Sequence in context: A161580 A024177 A360456 * A018406 A018483 A018270
KEYWORD
nonn,base,fini,full
AUTHOR
Jaroslav Krizek, Sep 04 2016
STATUS
approved