login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276452
Number of 4-orbits of the cyclic group C_4 for a bi-colored square n X n grid with n squares of one color.
4
0, 1, 20, 448, 13266, 486744, 21474640, 1106532352, 65221935740, 4327576834420, 319187489891256, 25904823417117120, 2294089575084464472, 220132629092378694832, 22751391952785312551232, 2519687900505221042995200, 297684761086121821704009432, 37370623083548749203599933004
OFFSET
1,3
COMMENTS
For a definition and examples of this problem see the comment section of A276449. The present sequence a(n) gives the number of 4-orbits under C_4 of such 2-colored n X n grids with n squares of one color.
LINKS
FORMULA
a(n) = (A014062(n) - A276451(n)*2 - A276449(n))/4 for n = 1, 2, 3, ...
EXAMPLE
a(2) = 1: the 4-orbit is
+ + o + o o + o
o o o + + + + o ,
and one can take the first one as representative.
For n = 3 there are a(3) = 20 4-orbits, represented by
+ + + + + o + + o + + o + + o
o o o + o o o + o o o + o o o
o o o o o o o o o o o o + o o
--------------------------------------
+ + o + + o + o + + o + + o +
o o o o o o + o o o + o o o o
o + o o o + o o o o o o + o o
--------------------------------------
+ o + + o o + o o + o o + o o
o o o + + o + o + + o o + o o
o + o o o o o o o o + o o o +
--------------------------------------
+ o o + o o + o o o + o o + o
o + + o + o o o + + + o + o +
o o o o + o o + o o o o o o o .
--------------------------------------
The complete orbit structure for n=3 is 1^0 2^2 4^20, see A276449(3) = 0, A276451(3) = 2, a(3) = 20
MATHEMATICA
f[n_] := If[MemberQ[{2, 3}, #], 0, Function[i, Binomial[(2 i) (2 i + #), i]]@ Floor[n/4]] &@ Mod[n, 4]; g[n_] := (Function[j, Binomial[2 j (j + Boole@ OddQ@ n), j]]@ Floor[n/2] - f@ n)/2; Table[(Binomial[n^2, n] - 2 g@ n - f@ n)/4, {n, 18}] (* Michael De Vlieger, Sep 07 2016 *)
PROG
(Python)
import math
def nCr(n, r):
f = math.factorial
return f(n) / f(r) / f(n-r)
# main program
for j in range(101):
a = nCr(j*j, j)
i = j/2
if j%2==0:
b = nCr(2*i*i, i)
else:
b = nCr(2*i*(i+1), i)
print(str(j)+" "+str((a-b)/4))
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved