login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of n!/(n^n-n).
2

%I #14 Sep 08 2022 08:46:17

%S 1,1,2,1,24,5,720,126,4480,6048,3628800,95040,479001600,55598400,

%T 5806080,1816214400,20922789888000,40327372800,6402373705728000,

%U 2501955993600,8911728967680000,193526296104960000,1124000727777607680000,696294353018880000,2256176006302688870400

%N Numerator of n!/(n^n-n).

%H Chai Wah Wu, <a href="/A276399/b276399.txt">Table of n, a(n) for n = 2..453</a>

%H Natasha Morrison and Alex Scott, <a href="https://people.maths.ox.ac.uk/scott/Papers/maxinduced.pdf">Maximizing the number of induced cycles in a graph</a>, Preprint, 2016. See Conj. 1.1.

%e 1, 1/4, 2/21, 1/26, 24/1555, 5/817, 720/299593, 126/134521, 4480/12345679, 6048/43229041, 3628800/67546215517, 95040/4622635937, 479001600/61054982558011, ...

%t Table[Numerator[n! / (n^n - n)], {n, 2, 30}] (* _Vincenzo Librandi_, Sep 12 2016 *)

%o (Python)

%o from __future__ import division

%o from math import factorial

%o from fractions import gcd

%o def A276399(n):

%o a = factorial(n-1)

%o return a//gcd(n**(n-1)-1,a) # _Chai Wah Wu_, Sep 11 2016

%o (Magma) [Numerator(Factorial(n)/(n^n-n)): n in [2..25]]; // _Vincenzo Librandi_, Sep 12 2016

%Y Cf. A276400.

%K nonn,frac

%O 2,3

%A _N. J. A. Sloane_, Sep 11 2016