Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Oct 15 2019 09:20:16
%S 1,4,31,300,3251,37744,459060,5773548,74474455,979872036,13099102575,
%T 177414673488,2429310288468,33574008073120,467717206216760,
%U 6560977611629676,92595131510426943,1313820730347196300,18730821529411507725,268185082351558093260
%N G.f. A(x) satisfies: x = A(x)-4*A(x)^2+A(x)^3.
%H Robert Israel, <a href="/A276316/b276316.txt">Table of n, a(n) for n = 1..844</a>
%H Elżbieta Liszewska, Wojciech Młotkowski, <a href="https://arxiv.org/abs/1907.10725">Some relatives of the Catalan sequence</a>, arXiv:1907.10725 [math.CO], 2019.
%H Thomas M. Richardson, <a href="http://arxiv.org/abs/1609.01193">The three 'R's and the Riordan dual</a>, arXiv:1609.01193 [math.CO], 2016.
%F G.f.: Series_Reversion(x-4*x^2+x^3).
%F From _Robert Israel_, Sep 02 2016: (Start)
%F G.f. g(x) satisfies the differential equation
%F (12-184*t-27*t^2)*g''(t) - (92+27*t)*g'(t) + 3*g(t) = 4.
%F (-27*n^2+3)*a(n)+(-184*n^2-276*n-92)*a(n+1)+(12*n^2+36*n+24)*a(n+2) = 0
%F for n >= 1. (End)
%F a(n) ~ (46 + 13*sqrt(13))^(n - 1/2) / (13^(1/4) * sqrt(Pi) * n^(3/2) * 2^(n + 1/2) * 3^(n - 1/2)). - _Vaclav Kotesovec_, Aug 22 2017
%e G.f.: A(x) = x+4*x^2+31*x^3+300*x^4+3251*x^5+37744*x^6+459060*x^7+...
%e Related Expansions:
%e A(x)^2 = x^2+8*x^3+78*x^4+848*x^5+9863*x^6+120096*x^7+1511634*x^8+...
%e A(x)^3 = x^3+12*x^4+141*x^5+1708*x^6+21324*x^7+272988*x^8+3566761*x^9+...
%p S:= series(RootOf(x-4*x^2+x^3-t,x),t,100):
%p seq(coeff(S,t,j),j=1..100); # _Robert Israel_, Sep 02 2016
%t Rest[CoefficientList[InverseSeries[Series[x - 4*x^2 + x^3, {x, 0, 20}], x],x]] (* _Vaclav Kotesovec_, Aug 22 2017 *)
%o (PARI) {a(n)=polcoeff(serreverse(x - 4*x^2 + x^3 + x^2*O(x^n)), n)}
%o for(n=1, 30, print1(a(n), ", "))
%Y Cf. A250886, A276310, A276314, A276315.
%K nonn,easy
%O 1,2
%A _Tom Richardson_, Aug 29 2016