Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Feb 05 2019 18:42:35
%S 5,11,45,173,693,2765,11061,44237,176949,707789,2831157,11324621,
%T 45298485,181193933,724775733,2899102925,11596411701,46385646797,
%U 185542587189,742170348749,2968681394997,11874725579981,47498902319925
%N Number of 3 X n 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.
%H R. H. Hardin, <a href="/A276300/b276300.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*a(n-1) + a(n-2) - 4*a(n-3) for n>4.
%F Conjectures from _Colin Barker_, Feb 05 2019: (Start)
%F G.f.: x*(5 - 9*x - 4*x^2 + 2*x^3) / ((1 - x)*(1 + x)*(1 - 4*x)).
%F a(n) = (8 + 27*4^n) / 40 for n>1 and even.
%F a(n) = (72 + 27*4^n) / 40 for n>1 and odd.
%F (End)
%e Some solutions for n=4:
%e ..0..1..2..1. .0..1..0..1. .0..1..0..1. .0..1..0..2. .0..1..2..1
%e ..0..1..2..0. .0..2..0..1. .2..1..2..1. .0..2..1..2. .0..1..2..0
%e ..2..1..2..0. .0..2..0..2. .2..1..0..2. .1..2..0..2. .0..1..2..1
%Y Row 3 of A276299.
%K nonn
%O 1,1
%A _R. H. Hardin_, Aug 28 2016