login
A276299
T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-1,1) or (0,-1) and new values introduced in order 0..2.
13
1, 1, 2, 2, 4, 5, 4, 12, 11, 14, 8, 36, 45, 31, 41, 16, 108, 173, 189, 88, 122, 32, 324, 693, 1017, 805, 250, 365, 64, 972, 2765, 5909, 5965, 3437, 710, 1094, 128, 2916, 11061, 33461, 50949, 34865, 14693, 2016, 3281, 256, 8748, 44237, 191289, 408105, 442001
OFFSET
1,3
COMMENTS
Table starts
....1.....1.......2........4..........8...........16............32
....2.....4......12.......36........108..........324...........972
....5....11......45......173........693.........2765.........11061
...14....31.....189.....1017.......5909........33461........191289
...41....88.....805.....5965......50949.......408105.......3363533
..122...250....3437....34865.....442001......4988145......59728757
..365...710...14693...203933....3861469.....61239977....1073114625
.1094..2016...62829..1192701...33851605....752660245...19398127957
.3281..5724..268677..6974781..297360321...9254592049..352134188049
.9842.16252.1148973.40786925.2615328377.113817204341.6411366745009
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) -4*a(n-2) +2*a(n-3) for n>4
k=3: a(n) = 6*a(n-1) -8*a(n-2) +4*a(n-3) -7*a(n-4) +6*a(n-5) for n>7
k=4: [order 11] for n>13
k=5: [order 33] for n>37
k=6: [order 70] for n>75
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>2
n=2: a(n) = 3*a(n-1) for n>2
n=3: a(n) = 4*a(n-1) +a(n-2) -4*a(n-3) for n>4
n=4: a(n) = 4*a(n-1) +10*a(n-2) -6*a(n-4) -22*a(n-5) +15*a(n-6) for n>8
n=5: [order 15] for n>17
n=6: [order 30] for n>32
n=7: [order 59] for n>61
EXAMPLE
Some solutions for n=4 k=4
..0..1..0..2. .0..1..2..0. .0..1..0..1. .0..1..0..1. .0..1..0..1
..0..1..0..1. .2..1..2..1. .0..1..2..1. .0..1..0..1. .0..1..0..2
..0..2..0..1. .2..1..2..0. .2..1..0..1. .2..1..2..1. .0..2..0..2
..0..1..0..2. .0..1..2..0. .0..1..2..0. .0..1..0..1. .1..2..0..1
CROSSREFS
Column 1 is A007051(n-1).
Row 1 is A000079(n-2).
Row 2 is A003946(n-1).
Sequence in context: A252938 A229402 A266249 * A231302 A231363 A225840
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Aug 28 2016
STATUS
approved