%I #7 Sep 08 2022 08:46:17
%S 1,7,28,90,252,635,1484,3267,6841,13744,26652,50108,91687,163772,
%T 286258,490654,826150,1368531,2233217,3594021,5709962,8963382,
%U 13913499,21371213,32503004,48973999,73143903,108333902,159187796,232158188,336157883,483427765
%N Number of triangular partitions of n of order 7.
%H L. Carlitz, R. Scoville, <a href="http://dx.doi.org/10.1090/S0025-5718-1975-0366803-0">A generating function for triangular partitions</a>, Math. Comp. 29 (1975) 67-77.
%F G.f.: 1/((1-x)^7*(1-x^3)^6*(1-x^5)^5*(1-x^7)^4*(1-x^9)^3*(1-x^11)^2*(1-x^13)).
%t CoefficientList[Series[1/((1-x)^7 (1-x^3)^6 (1-x^5)^5 (1-x^7)^4 (1-x^9)^3 (1-x^11)^2 (1-x^13)), {x, 0, 50}], x]
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^7*(1-x^3)^6*(1-x^5)^5*(1-x^7)^4*(1-x^9)^3*(1-x^11)^2*(1-x^13))));
%Y Cf. similar sequences listed in A276235.
%K nonn,easy
%O 0,2
%A _Vincenzo Librandi_, Sep 01 2016