The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276194 Odd numbers whose binary representation contains an even number of 1's and at least one 0. 2
 5, 9, 17, 23, 27, 29, 33, 39, 43, 45, 51, 53, 57, 65, 71, 75, 77, 83, 85, 89, 95, 99, 101, 105, 111, 113, 119, 123, 125, 129, 135, 139, 141, 147, 149, 153, 159, 163, 165, 169, 175, 177, 183, 187, 189, 195, 197, 201, 207, 209, 215, 219, 221, 225, 231, 235, 237 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Lei Zhou, Table of n, a(n) for n = 1..10000 Index entries for sequences related to binary expansion of n FORMULA a(2^n - floor(n/2)) = 4*2^n + 1, for all n >= 0. - Gheorghe Coserea, Oct 24 2016 EXAMPLE Binary expansions of odd integers in decimal and binary forms are as follows: 1 -> 1, no; 3 -> 11, no; 5 -> 101, yes, so a(1)=5; 7 -> 111, no; 9 -> 1001, yes so a(2)=9; 11 -> 1011, no; 13 -> 1101, no; 15 -> 1111, no; 17 -> 10001, yes so a(3)=17. MATHEMATICA BNDigits[m_Integer] := Module[{n = m, d, t = {}}, While[n > 0, d = Mod[n, 2]; PrependTo[t, d]; n = (n - d)/2]; t]; c = 1; Table[While[c = c + 2; d = BNDigits[c]; ld = Length[d]; c1 = Total[d]; ! (EvenQ[c1] && (c1 < ld))]; c, {n, 1, 57}] PROG (PARI) isok(n) = my(b=binary(n)); (n % 2) && (vecmin(b)==0) && !(vecsum(b) % 2); \\ Michel Marcus, Oct 21 2016 (PARI) seq(N) = { my(bag = List(), cnt = 0, n = 1); while(cnt < N, if (hammingweight(n)%2 == 0 && hammingweight(n+1) > 1, listput(bag, n); cnt++); n += 2); return(Vec(bag)); }; seq(57) \\ Gheorghe Coserea, Oct 25 2016 CROSSREFS Cf. A005408. Intersection of A129771 and A062289. Sequence in context: A095725 A005006 A369318 * A157970 A054278 A210978 Adjacent sequences: A276191 A276192 A276193 * A276195 A276196 A276197 KEYWORD nonn,base AUTHOR Lei Zhou, Oct 20 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 3 11:34 EST 2024. Contains 370511 sequences. (Running on oeis4.)