The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276183 Genus of the quotient of the modular curve X_0(n) by the Fricke involution. 6

%I #40 Sep 28 2020 10:03:06

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,1,1,

%T 0,0,1,1,0,1,0,2,1,1,1,2,0,1,0,0,1,2,1,1,1,1,2,3,0,3,1,2,1,1,1,3,2,2,

%U 2,4,0,2,2,2,1,3,2,5,1,2,1,4,1,4,3,3,2,4,1,4,2,4,4,4,1,3,3,2,3,3,1,7

%N Genus of the quotient of the modular curve X_0(n) by the Fricke involution.

%C a(n) is the genus of quotient space H/Gamma_0*(n), where H is the upper half plane and Gamma_0*(n) = Gamma_0(n) + W Gamma_0(n) is the extension of Gamma_0(n) via the involution z <-> W(z) = -n/z (see Cohn, 1988).

%H Gheorghe Coserea, <a href="/A276183/b276183.txt">Table of n, a(n) for n = 1..54321</a>

%H Harvey Cohn, <a href="https://doi.org/10.1090/S0025-5718-1988-0935079-4">Fricke's Two-Valued Modular Equations</a>, Math. Comp. 51 (1988), 787-807.

%H Harvey Cohn, <a href="https://doi.org/10.1007/978-1-4757-4158-2_4">A Numerical Survey of the Reduction of Modular Curve Genus by Fricke's Involutions</a>, Number Theory (New York Seminar 1989-1990), p. 100.

%H Fell, Harriet; Newman, Morris; Ordman, Edward; <a href="http://dx.doi.org/10.6028/jres.067B.006">Tables of genera of groups of linear fractional transformations</a>, J. Res. Nat. Bur. Standards Sect. B 67B 1963 61-68.

%H Andrew P. Ogg, <a href="http://archive.numdam.org/item/SDPP_1974-1975__16_1_A4_0/">Automorphismes de courbes modulaires</a>, Séminaire Delange-Pisot-Poitou. Théorie des nombres, vol. 16, no. 1 (1974-1975), talk no. 7, p. 1.

%F a(n) = (1 + A001617(n))/2 - r * A000003(n)/12 for all n > 4, where r=4 for n=3 (mod 8), r=6 for n=7 (mod 8) and r=3 otherwise.

%F a(n) <> 4884 for all n.

%e G.f. = x^22 + x^28 + x^30 + x^33 + x^34 + x^37 + x^38 + x^40 + 2*x^42 + x^43 + x^44 + ...

%t f[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors@ n}] - Count[(#^2 - # + 1)/n & /@ Range@ n, _?IntegerQ]/3 - Count[(#^2 + 1)/n & /@ Range@ n, _?IntegerQ]/4];

%t g[n_] := Ceiling[k0 = k /. FindRoot[EllipticK[1 - k^2]/EllipticK[k^2] == Sqrt@ n, {k, 1/2, 10^-10, 1}, WorkingPrecision -> 600, MaxIterations -> 100]; Exponent[MinimalPolynomial[RootApproximant[k0^2, 24], x], x]/2];

%t r[n_] := If[MemberQ[{3, 7}, #], 3 + (# - 1)/2, 3] &@ Mod[n, 8]; a[n_] := If[n <= 4, 0, (1 + f@ n)/2 - r[n] g[n]/12]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 102}] (* _Michael De Vlieger_, Oct 28 2016, after _Michael Somos_ at A001617 and _Jean-François Alcover_ at A000003 *)

%t ClassList[n_?Negative] :=

%t Select[Flatten[#, 1] &@Table[

%t {i, j, (j^2 - n)/(4 i)}, {i, Sqrt[-n/3]}, {j, 1 - i, i}],

%t Mod[#3, 1] == 0 && #3 >= # &&

%t GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]

%t A001617[n_] := If[n < 1, 0,

%t 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,

%t Divisors@n}] -

%t Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -

%t Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];

%t a[n_] := If[0 <= n <= 4, 0, (A001617[n] + 1)/2 - If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]] Length[ClassList[-4 n]]/12] (* _David Jao_, Sep 07 2020 *)

%o (PARI)

%o A000003(n) = qfbclassno(-4*n);

%o A000089(n) = {

%o if (n%4 == 0 || n%4 == 3, return(0));

%o if (n%2 == 0, n \= 2);

%o my(f = factor(n), fsz = matsize(f)[1]);

%o prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));

%o };

%o A000086(n) = {

%o if (n%9 == 0 || n%3 == 2, return(0));

%o if (n%3 == 0, n \= 3);

%o my(f = factor(n), fsz = matsize(f)[1]);

%o prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));

%o };

%o A001615(n) = {

%o my(f = factor(n), fsz = matsize(f)[1],

%o g = prod(k=1, fsz, (f[k, 1]+1)),

%o h = prod(k=1, fsz, f[k, 1]));

%o return((n*g)\h);

%o };

%o A001616(n) = {

%o my(f = factor(n), fsz = matsize(f)[1]);

%o prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));

%o };

%o A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;

%o a(n) = {

%o my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));

%o if (n < 5, 0, (1 + A001617(n))/2 - r * A000003(n)/12);

%o };

%o vector(102, n, a(n))

%Y Cf. A000003, A000086, A000089, A001615, A001616, A001617, A276181.

%K nonn

%O 1,42

%A _Gheorghe Coserea_, Oct 21 2016

%E New name from _David Jao_, Sep 07 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 17:28 EDT 2024. Contains 372522 sequences. (Running on oeis4.)