OFFSET
0,2
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 0..301
Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006.
FORMULA
n^2 * a(n) = 2*(7*n^2 - 7*n + 3)*a(n-1) - 12*(7*n^2 - 14*n + 9)*a(n-2) + 39*(7*n^2 - 21*n + 18) * a(n-3) - 72*(7*n^2 - 28*n + 30)*a(n-4) + 72*(7*n^2 - 35*n + 45) * a(n-5) - 216*(n-3)^2 * a(n-6), with a(0)=1, a(1)=6, a(2)=24, a(3)=78, a(4)=216, a(5)=504.
0 = x*(x+2)*(x+3)*(x^2+3*x+3)*(x^2+6*x+12)*y'' + (7*x^6 + 84*x^5 + 420*x^4 + 1092*x^3 + 1512*x^2 + 1008*x + 216)*y' + 9*(x+2)^2 * (x^3 + 6*x^2 + 12*x + 6)*y, where y(x) = A(x/-6).
EXAMPLE
A(x) = 1 + 6*x + 24*x^2 + 78*x^3 + 216*x^4 + 504*x^5 + 906*x^6 + ... is the g.f.
PROG
(PARI)
seq(N) = {
my(a = vector(N));
a[1] = 6; a[2] = 24; a[3] = 78; a[4] = 216; a[5] = 504; a[6] = 906;
for (n = 7, N,
my(t1 = 2*(7*n^2 - 7*n + 3)*a[n-1] - 12*(7*n^2 - 14*n + 9)*a[n-2],
t2 = 39*(7*n^2 - 21*n + 18) * a[n-3] - 72*(7*n^2 - 28*n + 30)*a[n-4],
t3 = 72*(7*n^2 - 35*n + 45) * a[n-5] - 216*(n-3)^2 * a[n-6]);
a[n] = (t1+t2+t3)/n^2);
concat(1, a);
};
seq(33)
(Magma) I:=[6, 24, 78, 216, 504, 906]; [1] cat [n le 6 select I[n] else (2*(7*n^2-7*n+3)*Self(n-1)-12*(7*n^2-14*n+9)*Self(n-2)+39*(7*n^2-21*n+18)*Self(n-3)-72*(7*n^2-28*n+30)*Self(n-4)+72*(7*n^2-35*n+45)*Self(n-5)-216*(n-3)^2*Self(n-6)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
CROSSREFS
KEYWORD
sign
AUTHOR
Gheorghe Coserea, Aug 24 2016
STATUS
approved