login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that remain primes after adding to them their largest missing digit.
1

%I #20 Sep 03 2016 23:56:47

%S 2,29,59,149,191,269,359,449,479,491,569,593,599,719,911,929,1109,

%T 1193,1229,1319,1439,1559,1619,1979,1987,2129,2339,2459,2549,2609,

%U 2699,2897,2909,2963,3209,3299,3449,3491,3539,3719,3911,3923,4019,4049,4091,4349,4649,4793,4943,4987,5099,5399,5519,5639,5693,5897

%N Primes that remain primes after adding to them their largest missing digit.

%C Resulting primes are: 11, 37, 67, 157, 199, 277, 367, 457, 487, 499, 577, 601, 607, 727, 919, 937, 1117, 1201, 1237, 1327, 1447, 1567, 1627, 1987, 1993, 2137.

%C If n > 2, the largest missing digit must be even, so in particular n contains digit 9. - _Robert Israel_, Sep 01 2016

%C Pandigital primes not included. - _Zak Seidov_, Sep 02 2016

%H Robert Israel, <a href="/A276169/b276169.txt">Table of n, a(n) for n = 1..10000</a>

%e 2+9=11, 29+8=37, 59+8=67 all primes.

%p lmd:= n -> max({$1..9} minus convert(convert(n,base,10),set)):

%p select(t -> isprime(t) and isprime(t + lmd(t)), [2,seq(i,i=3..10000,2)]); # _Robert Israel_, Sep 01 2016

%t Select[Prime[Range[1000]],PrimeQ[#+Complement[Range[9],IntegerDigits[#]][[-1]]]&]

%o (PARI) is(n) = {my(s); if(isprime(n), s = setminus(s=Set(vector(9, i, i)), Set(digits(n))); if(#s>0, n+=s[#s], return(0)); return(isprime(n)))} \\ _David A. Corneth_, Aug 23 2016

%Y Cf. A116667 (largest missing digit).

%K nonn,base

%O 1,1

%A _Zak Seidov_ and _Eric Angelini_, Aug 22 2016