Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 27 2017 08:34:03
%S 1,1458,9723402,77636318760,665145965903562,5915482311008318958,
%T 53837289804317953893960,497704257299202369371725086,
%U 4653371135224869009103021872330,43880754270176401422739454033276880
%N a(n) = (10*n)!*(n/3)!/((5*n)!*(10*n/3)!*(2*n)!).
%C Fractional factorials are defined in terms of the gamma function, for example, (n/3)! := gamma(n/3 + 1).
%C This is only conjecturally an integer sequence. The similarly defined sequence (10*n)!*floor(n/3)!/((5*n)!*floor(10*n/3)!*(2*n)!) = A211418(10*n) is integral.
%C Let u(n) = (30*n)!*n!/((15*n)!*(10*n)!*(6*n)!) = A211417(n). The three sequences u(1/2*n), u(1/3*n) and u(1/5*n) appear to be integral (checked up to n = 200). This is the sequence u(1/3*n). See A276100 ( u(1/2*n) ) and A276102 ( u(1/5*n) ).
%C The generating function for u(n) is Hypergeom([29/30, 23/30, 19/30, 17/30, 13/30, 11/30, 7/30, 1/30], [4/5, 3/5, 2/5, 1/5, 2/3, 1/3, 1/2], (2^14*3^9*5^5)*x) and is known to be algebraic. Are the generating functions for u(1/2*n), u(1/3*n) and u(1/5*n) also algebraic?
%H P. Bala, <a href="/A276098/a276098.pdf">Some integer ratios of factorials</a>
%H F. Rodriguez-Villegas, <a href="http://arxiv.org/abs/math/0701362">Integral ratios of factorials and algebraic hypergeometric functions</a>, arXiv:math/0701362 [math.NT], 2007.
%F O.g.f. A(x) = Hypergeom([29/30, 23/30, 19/30, 17/30, 13/30, 11/30, 7/30, 1/30], [4/5, 3/5, 2/5, 1/5, 2/3, 1/3, 1/2], (2^14*3^9*5^5)*x^3) + 1458*x*Hypergeom([29/30, 23/30, 17/30, 11/30, 13/10, 11/10, 9/10, 7/10], [17/15, 14/15, 11/15, 8/15, 5/6, 4/3, 2/3], (2^14*3^9*5^5)*x^3) + 9723402*x^2*Hypergeom([ 49/30, 43/30, 37/30, 31/30, 13/10, 11/10, 9/10, 7/10], [22/15, 19/15, 16/15, 13/15, 7/6, 5/3, 4/3],(2^14*3^9*5^5)*x^3).
%F a(n) ~ (2^14*3^9*5^5)^(n/3)/(sqrt(20*Pi*n)).
%p A211417 := proc(n)
%p (30*n)!*(n)!/((15*n)!(10*n)!(6*n)!);
%p end proc:
%p seq(simplify(A211417(1/3*n)), n = 0..10);
%t Table[(10*n)!*(n/3)!/((5*n)!*(10*n/3)!*(2*n)!) // FullSimplify, {n, 0, 9}] (* _Jean-François Alcover_, Nov 27 2017 *)
%Y Cf. A211417, A276100, A276102.
%K nonn,easy
%O 0,2
%A _Peter Bala_, Aug 22 2016