login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276034 a(n) is the number of decompositions of 2n into an unordered sum of two primes in A274987. 3
0, 0, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 3, 2, 1, 2, 2, 2, 1, 2, 1, 0, 2, 1, 1, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 1, 2, 4, 3, 1, 5, 3, 2, 5, 1, 2, 2, 2, 5, 2, 3, 4, 5, 3, 2, 5, 2, 1, 4, 0, 1, 5, 3, 1, 3, 5, 4, 4, 3, 2, 4, 3, 3, 4, 2, 3, 7, 2, 2, 3, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
The two primes are allowed to be the same.
It is conjectured that the primes in A274987 (a subset of all primes) are sufficient to decomposite even numbers into two primes in A274987 when n > 958.
This sequence provides a very tight alternative of the Goldbach conjecture for all positive integers, in which indices of zero terms form a complete sequence {1, 2, 16, 26, 64, 97, 107, 122, 146, 167, 194, 391, 451, 496, 707, 856, 958}.
There is no more zero terms of a(n) tested up to n = 100000.
LINKS
EXAMPLE
A274987 = {3, 5, 7, 11, 13, 17, 23, 31, 37, 53, 59, 61, 73, 79, 83, 89, 101, 103, 109, ...}.
For n=3, 2n=6 = 3+3, one case of decomposition, so a(3)=1;
for n=4, 2n=8 = 3+5, one case of decomposition, so a(4)=1;
...
for n=17, 2n=34 = 3+31 = 11+23 = 17+17, three cases of decompositions, so a(17)=3.
MATHEMATICA
p = 3; sp = {p}; a = Table[m = 2*n; l = Length[sp]; While[sp[[l]] < m, While[p = NextPrime[p]; cp = 2*3^(Floor[Log[3, 2*p - 1]]) - p; ! PrimeQ[cp]]; AppendTo[sp, p]; l++]; ct = 0; Do[If[(2*sp[[i]] <= m) && (MemberQ[sp, m - sp[[i]]]), ct++], {i, 1, l}]; ct, {n, 1, 87}]
CROSSREFS
Sequence in context: A297776 A043535 A043560 * A111626 A297777 A043536
KEYWORD
nonn,easy,base,look
AUTHOR
Lei Zhou, Nov 15 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 21:09 EDT 2024. Contains 371798 sequences. (Running on oeis4.)