Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 08 2022 08:46:17
%S 1,21,693,23940,734643,13697019,-494620749,-83079255420,
%T -6814815765975,-444980496382695,-25071954462140859,
%U -1226361084729855984,-49426887403935395172,-1287188243957889124740,23935850133162849385308,6798920856226697943604944,650950202721260061404073891
%N n^2 * a(n) = 3*(39*n^2 - 52*n + 20) * a(n-1) - 441*(3*n-4)^2 * a(n-2), with a(0)=1, a(1)=21.
%H Gheorghe Coserea, <a href="/A276021/b276021.txt">Table of n, a(n) for n = 0..201</a>
%H Robert S. Maier, <a href="http://arxiv.org/abs/math/0611041">On Rationally Parametrized Modular Equations</a>, arXiv:math/0611041 [math.NT], 2006.
%F n^2 * a(n) = 3*(39*n^2-52*n+20) * a(n-1) - 441*(3*n-4)^2 * a(n-2), with a(0)=1, a(1)=21.
%F 0 = 9*x*(x^2+13*x+49)*y'' + (21*x^2 + 195*x + 441)*y' + (4*x+21)*y, where y(x) = A(x/-441).
%e A(x) = 1 + 21*x + 693*x^2 + 23940*x^3 + ... is the g.f.
%t a[0] = 1; a[1] = 21; a[n_] := a[n] = (3(39n^2 - 52n + 20) a[n-1] - 441(3n - 4)^2 a[n-2])/n^2;
%t Table[a[n], {n, 0, 16}] (* _Jean-François Alcover_, Oct 19 2018 *)
%o (PARI)
%o seq(N) = {
%o my(a = vector(N)); a[1] = 21; a[2] = 693;
%o for (n=3, N,
%o a[n] = (3*(39*n^2 - 52*n + 20) * a[n-1] - 441*(3*n-4)^2 * a[n-2])/n^2);
%o concat(1,a);
%o };
%o seq(17)
%o (Magma) I:=[21,693]; [1] cat [n le 2 select I[n] else (3*(39*n^2-52*n+20)*Self(n-1)-441*(3*n-4)^2*Self(n-2)) div n^2: n in [1..30]]; // _Vincenzo Librandi_, Aug 25 2016
%Y Cf. A091401, A276018.
%K sign
%O 0,2
%A _Gheorghe Coserea_, Aug 23 2016