login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275974 Partial sums of the Jeffreys binary sequence A275973. 2

%I #25 Feb 18 2024 10:49:34

%S 1,1,2,3,3,3,3,3,4,5,6,7,8,9,10,11,11,11,11,11,11,11,11,11,11,11,11,

%T 11,11,11,11,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,

%U 30,31,32,33,34,35,36,37,38,39,40,41,42,43,43,43,43,43

%N Partial sums of the Jeffreys binary sequence A275973.

%C The ratio d(n) = a(n)/n, while obviously bounded, has no limit. Rather, it kind of 'oscillates', at an exponentially decreasing rate, between about 1/3 and 2/3. As mentioned by Jeffreys, the values of liminf and limsup of the set {d(n)} are 1/3 and 2/3, respectively. A proof of this fact by elementary means is relatively easy, for example, using the first formula below, but the following statement is a conjecture: Any real value c in the interval [1/3, 2/3] is an accumulation point of {d(n)}.

%H Alois P. Heinz, <a href="/A275974/b275974.txt">Table of n, a(n) for n = 1..16385</a> (first 2100 terms from Stanislav Sykora)

%H Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, <a href="http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf">Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications</a>, Preprint 2016.

%H Hsien-Kuei Hwang, S. Janson, T.-H. Tsai, <a href="https://doi.org/10.1145/3127585">Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications</a>, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585.

%F For k>= 0 and 4^k <= m <= 2*4^k (i.e., m spanning a block of 0's in A275973), a(m) = 1 + 2*(1 + 4 + 4^2 + ... + 4^(k-1)) = 1/3 + (2/3)*4^k. [sequence reference corrected by _Peter Munn_, May 16 2019]

%F For any n, d(n) = a(n)/n > 1/3.

%F liminf_{n->infinity} d(n) = 1/3 and limsup_{n->infinity} d(n) = 2/3.

%p b:= n-> (p-> `if`(2^p=n, (-1)^p, 0))(ilog2(n)):

%p g:= proc(n) g(n):= `if`(n=1, 1, g(n-1)-b(n-1)) end:

%p a:= proc(n) a(n):= `if`(n<1, 0, a(n-1)+g(n)) end:

%p seq(a(n), n=1..68); # _Alois P. Heinz_, Feb 18 2024

%o (PARI) JeffreysSequence(nmax) = {

%o my(a=vector(nmax),n=0,p=1);a[n++]=1;

%o while(n<nmax,

%o for(k=2^(p-1)+1,2^p,a[n++]=0;if(n==nmax,break));

%o if(n<nmax,for(k=2^p+1,2^(p+1),a[n++]=1;if(n==nmax,break)));

%o p+=2;);

%o return(a);}

%o a = JeffreysSequence(2100);

%o for(n=2,#a,a[n]+=a[n-1]);a

%Y Cf. A275973.

%K nonn

%O 1,3

%A _Stanislav Sykora_, Aug 15 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 06:35 EDT 2024. Contains 371964 sequences. (Running on oeis4.)