login
Square array A(1,k) = A265905(k), A(n>1,k) = A(n-1, k+1) - A(n-1, k); successive differences of A265905 read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
7

%I #7 Aug 16 2016 09:46:43

%S 1,3,2,11,8,6,49,38,30,24,291,242,204,174,150,1979,1688,1446,1242,

%T 1068,918,15217,13238,11550,10104,8862,7794,6876,136659,121442,108204,

%U 96654,86550,77688,69894,63018,1349627,1212968,1091526,983322,886668,800118,722430,652536,589518,14561425,13211798,11998830,10907304,9923982,9037314,8237196,7514766,6862230,6272712

%N Square array A(1,k) = A265905(k), A(n>1,k) = A(n-1, k+1) - A(n-1, k); successive differences of A265905 read by descending antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

%H Antti Karttunen, <a href="/A275950/b275950.txt">Table of n, a(n) for n = 1..406; the first 28 antidiagonals of array</a>

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>

%F A(1,k) = A265905(k); and for n > 1, A(n,k) = A(n-1, k+1) - A(n-1, k).

%e The top left 7 x 8 corner of the array:

%e 1, 3, 11, 49, 291, 1979, 15217

%e 2, 8, 38, 242, 1688, 13238, 121442

%e 6, 30, 204, 1446, 11550, 108204, 1091526

%e 24, 174, 1242, 10104, 96654, 983322, 10907304

%e 150, 1068, 8862, 86550, 886668, 9923982, 123958350

%e 918, 7794, 77688, 800118, 9037314, 114034368, 1514355678

%e 6876, 69894, 722430, 8237196, 104997054, 1400321310, 20026187676

%e 63018, 652536, 7514766, 96759858, 1295324256, 18625866366, 291196957578

%o (Scheme)

%o (define (A275950 n) (A275950bi (A002260 n) (A004736 n)))

%o (define (A275950bi row col) (if (= 1 row) (A265905 col) (- (A275950bi (- row 1) (+ 1 col)) (A275950bi (- row 1) col))))

%Y Transpose: A275951.

%Y Row 1: A265905, row 2: A265906, row 3: A275953.

%Y Column 1: A275955.

%Y Cf. A153880.

%Y Variant: A275960.

%K nonn,tabl

%O 1,2

%A _Antti Karttunen_, Aug 13 2016