login
Expansion of (1+x-x^3) / (1-4*x-x^4-x^5).
1

%I #11 Sep 05 2022 20:00:40

%S 1,5,20,79,317,1274,5121,20583,82728,332503,1336407,5371332,21588639,

%T 86769787,348748058,1401699971,5633759855,22643397846,91009109229,

%U 365786884945,1470182999606,5909009156125,23749689131575,95455552520474,383658179966447,1542011912021519,6197706346373776

%N Expansion of (1+x-x^3) / (1-4*x-x^4-x^5).

%H Colin Barker, <a href="/A275907/b275907.txt">Table of n, a(n) for n = 0..1000</a>

%H T. Doslic, T. Short, <a href="http://arxiv.org/abs/1511.00590">Maximal matchings in polyspiro and benzenoid chains</a>, arXiv:1511.00590, [math.CO], 2015. See Th. 4.4.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,0,1,1).

%F G.f.: (1+x-x^3) / (1-4*x-x^4-x^5).

%F a(n) = 4*a(n-1)+a(n-4)+a(n-5) for n>4. - _Colin Barker_, Aug 26 2016

%t CoefficientList[Series[(1 + x - x^3)/(1 - 4*x - x^4 - x^5), {x, 0, 30}], x] (* _Wesley Ivan Hurt_, Sep 05 2022 *)

%o (PARI) Vec((1+x-x^3)/(1-4*x-x^4-x^5) + O(x^30)) \\ _Colin Barker_, Aug 26 2016

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Aug 25 2016