login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x,y) satisfies: A(x,y) = x*y + 1/A(x,x*y), with A(0,y) = 1.
3

%I #23 Aug 10 2016 13:07:50

%S 1,0,1,0,-1,0,1,0,-1,1,0,1,-2,0,-1,2,-1,0,1,-2,3,0,-1,3,-4,1,0,1,-4,5,

%T -4,0,-1,4,-8,7,-1,0,1,-4,11,-10,5,0,-1,5,-13,16,-11,1,0,1,-6,16,-24,

%U 18,-6,0,-1,6,-20,33,-30,16,-1,0,1,-6,24,-44,49,-30,7,0,-1,7,-28,57,-74,53,-22,1,0,1,-8,32,-74,105,-92,47,-8,0,-1,8,-37,94,-145,149,-89,29,-1,0,1,-8,43,-114,200,-226,163,-70,9,0,-1,9,-48,138,-268,332,-281,143,-37,1,0,1,-10,53,-168,346,-480,454,-276,100,-10,0,-1,10,-60,200,-442,675,-704,503,-221,46,-1,0,1,-10,67,-234,561,-922,1064,-860,450,-138,11,0,-1,11,-73,273,-701,1236,-1567,1402,-863,330,-56,1,0,1,-12,80,-318,861,-1634,2246,-2214,1554,-710,185,-12,0,-1,12,-88,367,-1047,2130,-3144,3403,-2657,1429,-478,67,-1,0,1,-12,96,-418,1268,-2732,4325,-5088,4378,-2700,1088,-242,13

%N G.f. A(x,y) satisfies: A(x,y) = x*y + 1/A(x,x*y), with A(0,y) = 1.

%C Row sums equals A275761.

%C Diagonal sums yield A275762.

%C G.f. A(x,y) evaluated at A(-x,-1) yields the g.f. of A143951.

%C G.f. A(x,y) evaluated at A(x,1/x) yields the g.f. of A275762.

%H Paul D. Hanna, <a href="/A275760/b275760.txt">Table of n, a(n) for n = 0..10201, for rows 0..200 of flattened form of triangle.</a>

%F G.f.: A(x,y) = 1/(1 - x*y/(1 + x*(1+y) - x^3*y/(1 + x^2*(1+y) - x^5*y/(1 + x^3*(1+y) - x^7*y/(1 + x^4*(1+y) - x^9*y/(1 - ...)))))), a continued fraction.

%F G.f.: A(x,y) = 1/(1 - x*y/(1+x + x*y/(1+x^2 - x^4*y/(1+x^3 + x^2*y/(1+x^4 - x^7*y/(1+x^5 + x^3*y/(1+x^6 - x^10*y/(1+x^7 + x^4*y/(1+x^8 - x^13*y/(1+x^9 + x^5*y/(1+x^10 - x^16*y/(1 + ...)))))))))))), a continued fraction.

%F Given g.f. A(x,y), then A(x,1/x) = 1 + 1/A(x,1).

%e G.f.: A(x,y) = 1 + y*x - y*x^2 + y*x^3 + (y^2 - y)*x^4 + (-2*y^2 + y)*x^5 + (-y^3 + 2*y^2 - y)*x^6 + (3*y^3 - 2*y^2 + y)*x^7 + (y^4 - 4*y^3 + 3*y^2 - y)*x^8 + (-4*y^4 + 5*y^3 - 4*y^2 + y)*x^9 + (-y^5 + 7*y^4 - 8*y^3 + 4*y^2 - y)*x^10 + (5*y^5 - 10*y^4 + 11*y^3 - 4*y^2 + y)*x^11 + (y^6 - 11*y^5 + 16*y^4 - 13*y^3 + 5*y^2 - y)*x^12 + (-6*y^6 + 18*y^5 - 24*y^4 + 16*y^3 - 6*y^2 + y)*x^13 + (-y^7 + 16*y^6 - 30*y^5 + 33*y^4 - 20*y^3 + 6*y^2 - y)*x^14 + (7*y^7 - 30*y^6 + 49*y^5 - 44*y^4 + 24*y^3 - 6*y^2 + y)*x^15 + (y^8 - 22*y^7 + 53*y^6 - 74*y^5 + 57*y^4 - 28*y^3 + 7*y^2 - y)*x^16 +...

%e such that the g.f. A(x,y) satisfies:

%e A(x,y) = x*y + 1/(x^2*y + 1/A(x,x^2*y)),

%e A(x,y) = x*y + 1/(x^2*y + 1/(x^3*y + 1/A(x,x^3*y))),

%e A(x,y) = x*y + 1/(x^2*y + 1/(x^3*y + 1/(x^4*y + 1/(x^5*y + 1/(x^6*y + 1/A(x^6*y)))))), ...

%e with the initial condition A(0,y) = 1.

%e RELATED SERIES.

%e The g.f. evaluated at A(-x,-1) yields the g.f. of A143951:

%e A(-x,-1) = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 6*x^7 + 9*x^8 + 14*x^9 + 21*x^10 + 31*x^11 + 47*x^12 +...+ A143951(n)*x^n +...

%e which enumerates Dyck paths such that the area between the x-axis and the path is n.

%e The g.f. evaluated at A(x,1/x) yields the g.f. of A275762:

%e A(x,1/x) = 2 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 +...+ A275762(n)*x^n +...

%e Compare A(x,1/x) to 1/A(x,1), which begins:

%e 1/A(x,1) = 1 - x + 2*x^2 - 4*x^3 + 7*x^4 - 12*x^5 + 22*x^6 - 41*x^7 + 74*x^8 - 133*x^9 + 243*x^10 - 444*x^11 +...+ A275762(n)*x^n +...

%e This triangle of coefficients in A(x,y) begins:

%e 1;

%e 0, 1;

%e 0, -1;

%e 0, 1;

%e 0, -1, 1;

%e 0, 1, -2;

%e 0, -1, 2, -1;

%e 0, 1, -2, 3;

%e 0, -1, 3, -4, 1;

%e 0, 1, -4, 5, -4;

%e 0, -1, 4, -8, 7, -1;

%e 0, 1, -4, 11, -10, 5;

%e 0, -1, 5, -13, 16, -11, 1;

%e 0, 1, -6, 16, -24, 18, -6;

%e 0, -1, 6, -20, 33, -30, 16, -1;

%e 0, 1, -6, 24, -44, 49, -30, 7;

%e 0, -1, 7, -28, 57, -74, 53, -22, 1;

%e 0, 1, -8, 32, -74, 105, -92, 47, -8;

%e 0, -1, 8, -37, 94, -145, 149, -89, 29, -1;

%e 0, 1, -8, 43, -114, 200, -226, 163, -70, 9;

%e 0, -1, 9, -48, 138, -268, 332, -281, 143, -37, 1;

%e 0, 1, -10, 53, -168, 346, -480, 454, -276, 100, -10;

%e 0, -1, 10, -60, 200, -442, 675, -704, 503, -221, 46, -1;

%e 0, 1, -10, 67, -234, 561, -922, 1064, -860, 450, -138, 11;

%e 0, -1, 11, -73, 273, -701, 1236, -1567, 1402, -863, 330, -56, 1;

%e 0, 1, -12, 80, -318, 861, -1634, 2246, -2214, 1554, -710, 185, -12;

%e 0, -1, 12, -88, 367, -1047, 2130, -3144, 3403, -2657, 1429, -478, 67, -1;

%e 0, 1, -12, 96, -418, 1268, -2732, 4325, -5088, 4378, -2700, 1088, -242, 13;

%e 0, -1, 13, -104, 474, -1521, 3459, -5863, 7416, -7002, 4830, -2295, 674, -79, 1;

%e 0, 1, -14, 112, -538, 1803, -4342, 7819, -10598, 10884, -8290, 4537, -1624, 310, -14;

%e 0, -1, 14, -121, 607, -2124, 5397, -10274, 14895, -16478, 13769, -8473, 3588, -928, 92, -1;

%e 0, 1, -14, 131, -678, 2492, -6638, 13348, -20582, 24408, -22200, 15126, -7406, 2367, -390, 15;

%e 0, -1, 15, -140, 755, -2905, 8095, -17160, 27998, -35485, 34829, -26052, 14411, -5476, 1251, -106, 1; ...

%o (PARI) /* Print first N rows of this triangle: */ N=32;

%o {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = 1/A + y*x^(n+1-k)); polcoeff(A, n)}

%o {for(n=0, N, for(k=0, n, if(k==0, print1(polcoeff(a(n)+y*O(y^n), k, y)", "), if(polcoeff(a(n)+y*O(y^n), k, y)==0, break, print1(polcoeff(a(n)+y*O(y^n), k, y), ", ")))); print(""))}

%Y Cf. A275761, A275762, A143951.

%K sign,tabf

%O 0,13

%A _Paul D. Hanna_, Aug 08 2016