%I #16 Jun 06 2022 10:23:38
%S 1,5,8,1,4,0,2,1,6,8,0,3,1,1,2,2,9,4,5,3,4,2,9,8,7,9,8,7,4,4,0,5,8,5,
%T 4,1,9,5,1,8,5,9,8,3,8,8,9,0,3,8,0,8,4,6,0,2,9,3,0,2,4,5,2,7,5,3,4,8,
%U 1,4,7,0,1,2,4,7,7,6,2,7,9,0,9,9,6,9,6,8,2,7,8,1,1,5,3,1,0,5,0,4,9,6,0,6,7
%N Decimal expansion of 9*zeta(3)/(Pi^2*log(2)).
%F 9*zeta(3)/(Pi^2*log(2)) = ((3*zeta(3))/4)/((Pi^2)/(12*log(2))) =
%F A197070/A100199 = [Sum {n>=1} (-1)^(n+1)/n^3] / [( Sum_{n>=1} (-1)^(n+1)/n^2 ) / ( Sum_{n>=1} (-1)^(n+1)/n )].
%e 9*Zeta(3)/(Pi^2*log(2)) = 1.5814021680311229....
%t RealDigits[9 Zeta[3]/(Pi^2 Log[2]),10,120][[1]] (* _Harvey P. Dale_, Jun 06 2022 *)
%o (PARI) 9*zeta(3)/Pi^2/log(2) \\ _Charles R Greathouse IV_, Aug 05 2016
%Y Cf. A002162, A100199, A197070.
%K nonn,cons
%O 1,2
%A _Terry D. Grant_, Aug 05 2016
%E Corrected and extended by _Rick L. Shepherd_, Nov 23 2016
%E Previous Mathematica program replaced by _Harvey P. Dale_, Jun 06 2022