login
Expansion of (6*x^5+5*x^4+4*x^3+3*x^2+2*x+8)/(1-x-x^6).
2

%I #9 Aug 21 2016 03:58:07

%S 8,10,13,17,22,28,36,46,59,76,98,126,162,208,267,343,441,567,729,937,

%T 1204,1547,1988,2555,3284,4221,5425,6972,8960,11515,14799,19020,24445,

%U 31417,40377,51892,66691,85711,110156,141573,181950,233842,300533,386244,496400,637973,819923,1053765,1354298

%N Expansion of (6*x^5+5*x^4+4*x^3+3*x^2+2*x+8)/(1-x-x^6).

%C More terms than usual are shown in order to distinguish this from A010916. Agree with A010916 just for n <= 37.

%H Colin Barker, <a href="/A275627/b275627.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,1).

%F a(n) = a(n-1)+a(n-6) for n>5. - _Colin Barker_, Aug 21 2016

%o (PARI) Vec((6*x^5+5*x^4+4*x^3+3*x^2+2*x+8)/(1-x-x^6) + O(x^50)) \\ _Colin Barker_, Aug 21 2016

%Y Cf. A010916.

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_, Aug 07 2016