The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275572 Consider the function G(m) that adds to m a fractional part whose digits are the digits of m (informally, G(m) = m.m). Sequence lists integers of the form Sum_{i=1..k} G(i) for some k. 4
 11, 605, 4140, 15464, 320769, 4499448, 6569655, 468939687, 1800052998, 76293876291, 124999924997, 8000003299997, 39521606452157, 146365371463650, 2449999994499996, 20000000169999996, 3883989336388398929, 40500000000049999995, 3344565630038445656295, 405000000000904999999995 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS E.g.: G(54627) = 54627.54627. Values of k for the terms here listed are: 4, 34, 90, 175, 800, 2999, 3624, 30624, 60000, 390624, 499999, 4000000, 8890624, 17109375, 69999999, 200000000, ... (see A054464). (This sequence is in fact equivalent to A054464. - N. J. A. Sloane, Aug 07 2016) LINKS Robert Israel, Table of n, a(n) for n = 1..900 FORMULA From Robert Israel, Aug 03 2016: (Start) For d >=2, the k with d digits are the solutions of x^2 + x - 9*10^(d-1)*d - 10^(d-1) == 0 (mod 2*10^d) with 10^(d-1) <= x < 10^d. The corresponding a(n) are k(k+1)(1+10^(-d))/2 + (10^d-9d-1)/20. (End) EXAMPLE 1.1 + 2.2 + 3.3 + 4.4 = 11; 1.1 + 2.2 + 3.3 + ... + 32.32 + 33.33 + 34.34 = 605. MAPLE P:= proc(q) local a, b, c, k, n; c:=0; for n from 1 to q do a:=[] b:=convert(n, base, 10); for k from 1 to nops(b) do a:=[b[k], op(a)]; od; a:=n+add(a[k]*10^(-k), k=1..nops(a)); c:=c+a; if type(c, integer) then print(c); fi; od; end: P(10^12); # Alternative: T := (x, d) -> ((1/2)*x^2+(1/2)*x)*10^(-d)+(1/2)*x^2-(9/20)*d+(1/2)*x+(1/20)*10^d-1/20: F:= proc(d) local x, S;   S:= map(t -> subs(t, x), [msolve(x^2 + x - 9*10^(d-1)*d - 10^(d-1), 2*10^d)]);   op(map(T, sort(select(t -> t >= 10^(d-1) and t < 10^d, S)), d)) end proc: 11, seq(F(d), d=2..30); # Robert Israel, Aug 03 2016 MATHEMATICA Select[Accumulate@ Map[# + #/10^IntegerLength@ # &, Range[10^7]], IntegerQ] (* Michael De Vlieger, Aug 02 2016 *) CROSSREFS Cf. A054464, A275573. Sequence in context: A185656 A142738 A262015 * A115737 A319835 A288549 Adjacent sequences:  A275569 A275570 A275571 * A275573 A275574 A275575 KEYWORD nonn,base AUTHOR Paolo P. Lava, Aug 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 17:31 EST 2020. Contains 338807 sequences. (Running on oeis4.)