Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Nov 19 2024 02:57:27
%S 5,55,2365,113311,5476405,264893255,12813875437,619859803695,
%T 29985188632421,1450508002869079,70167091762786205,
%U 3394273427239643839,164195092176119969173,7942798031108524622951,384226104001681151724877,18586611219134532494467151,899111520569015285343455941,43493755633501102693569684087,2103973462501643822799172235773
%N a(n) = (tan(1*Pi/11))^(2*n) + (tan(2*Pi/11))^(2*n) + (tan(3*Pi/11))^(2*n) + (tan(4*Pi/11))^(2*n) + (tan(5*Pi/11))^(2*n).
%C (tan(1*Pi/11))^(2*n), (tan(2*Pi/11))^(2*n), (tan(3*Pi/11))^(2*n),(tan(4*Pi/11))^(2*n), (tan(5*Pi/11))^(2*n) are roots of the polynomial x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11.
%C Sum_{k=1..((m-1)/2)} (tan(k*Pi/m))^(2*n) is an integer when m >= 3 is an odd integer (see AMM link); this sequence is the particular case m = 11. All terms are odd. - _Bernard Schott_, Apr 24 2022
%H Colin Barker, <a href="/A275546/b275546.txt">Table of n, a(n) for n = 0..550</a>
%H Michel Bataille and Li Zhou, <a href="https://doi.org/10.2307/30037561">A Combinatorial Sum Goes on Tangent</a>, The American Mathematical Monthly, Vol. 112, No. 7 (Aug. - Sep., 2005), Problem 11044, pp. 657-659.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (55,-330,462,-165,11).
%F a(-2) = 141, a(-1) = 15, a(0) = 5, a(1) = 55, a(2) = 2365.
%F a(n) = +55*a(n-1)-330*a(n-2)+462*a(n-3)-165*a(n-4)-11*a(n-5) for n > 2.
%F a(n) ~ k^n where k = 48.37415... is the largest real root of x^5 - 55x^4 + 330x^3 - 462x^2 + 165x - 11. - _Charles R Greathouse IV_, Aug 01 2016
%F G.f.: (5-220*x+990*x^2-924*x^3+165*x^4) / (1-55*x+330*x^2-462*x^3+165*x^4-11*x^5). - _Colin Barker_, Aug 02 2016
%o (PARI) a(n)=([0,1,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1;11,-165,462,-330,55]^n*[5;55;2365;113311;5476405])[1,1] \\ _Charles R Greathouse IV_, Aug 01 2016
%o (PARI) Vec((5-220*x+990*x^2-924*x^3+165*x^4)/(1-55*x+330*x^2-462*x^3+165*x^4-11*x^5) + O(x^20)) \\ _Colin Barker_, Aug 02 2016
%Y Similar to: A000244 (m=3), 2*A165225 (m=5), A108716 (m=7), A353410 (m=9), this sequence (m=11), A353411 (m=13).
%K nonn,easy
%O 0,1
%A _Kai Wang_, Aug 01 2016