login
Number of nX6 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.
1

%I #4 Jul 30 2016 19:58:39

%S 122,11664,10000,15296,17712,68080,268152,1063756,4220952,16808164,

%T 66958736,267555284,1069442584,4276248392,17124441536,68526589584,

%U 274440666248,1099065057188,4401177662772,17628768823132,70603317991512

%N Number of nX6 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,0) or (-1,-1) and new values introduced in order 0..2.

%C Column 6 of A275504.

%H R. H. Hardin, <a href="/A275502/b275502.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +32*a(n-2) -496*a(n-4) -285*a(n-5) +4881*a(n-6) +4147*a(n-7) -34777*a(n-8) -31747*a(n-9) +193564*a(n-10) +159250*a(n-11) -877342*a(n-12) -559729*a(n-13) +3305202*a(n-14) +1371918*a(n-15) -10462555*a(n-16) -2038881*a(n-17) +28064748*a(n-18) -2573*a(n-19) -64372540*a(n-20) +10287733*a(n-21) +127544223*a(n-22) -35738974*a(n-23) -220567144*a(n-24) +79285065*a(n-25) +335987479*a(n-26) -133564456*a(n-27) -453839772*a(n-28) +180266595*a(n-29) +545461852*a(n-30) -199009384*a(n-31) -583472166*a(n-32) +180690849*a(n-33) +554326040*a(n-34) -134105374*a(n-35) -466206332*a(n-36) +79652731*a(n-37) +345892063*a(n-38) -35882573*a(n-39) -225652263*a(n-40) +10312807*a(n-41) +129040364*a(n-42) -882*a(n-43) -64456638*a(n-44) -2039779*a(n-45) +27988146*a(n-46) +1372306*a(n-47) -10489437*a(n-48) -560497*a(n-49) +3358044*a(n-50) +159731*a(n-51) -905008*a(n-52) -31875*a(n-53) +201297*a(n-54) +4160*a(n-55) -35960*a(n-56) -285*a(n-57) +4960*a(n-58) -496*a(n-60) +a(n-61) +32*a(n-62) -a(n-64) for n>68

%e Some solutions for n=4

%e ..0..0..0..0..1..1. .0..0..1..2..2..2. .0..0..0..1..1..1. .0..0..1..0..2..1

%e ..1..2..2..1..2..2. .2..1..2..0..1..1. .1..1..1..1..2..0. .1..1..1..2..2..1

%e ..2..2..1..1..2..0. .1..1..2..0..1..0. .1..2..2..2..0..0. .1..2..2..2..1..0

%e ..0..0..0..0..0..1. .0..0..0..1..2..2. .2..0..0..0..0..1. .0..2..0..0..1..0

%Y Cf. A275504.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 30 2016